MHB Union & Set Rules - Learn the Basics Now!

  • Thread starter Thread starter TinaSprout
  • Start date Start date
  • Tags Tags
    Rules Set Union
TinaSprout
Messages
2
Reaction score
0
I am going over some of my notes, and I cannot understand unions, here is the selection I am having trouble with
View attachment 7601

How does the union of four different sets equal just one of the sets? Should the union of 4 sets be the four different sets instead of one.
I am missing something fundamental to unions and intersections.
Thanks for your help!
 

Attachments

  • math help.PNG
    math help.PNG
    4.5 KB · Views: 127
Physics news on Phys.org
TinaSprout said:
I am going over some of my notes, and I cannot understand unions, here is the selection I am having trouble with


How does the union of four different sets equal just one of the sets? Should the union of 4 sets be the four different sets instead of one.
I am missing something fundamental to unions and intersections.
Thanks for your help!

Hi TinaSprout! Welcome to MHB! (Smile)

The union of 2 sets is the set that contains all elements that those 2 sets contain.
So e.g. $\{a,b,c\} \cup \{a,d\}=\{a,b,c,d\}$.
That is the combination of all elements.
Note that the element $a$ that is part of both sets, is included once in the union.The notation $[-1,1]$ means that we have a set of infinitely many elements.
Those are all real numbers between -1 and +1.
The union of $[-1,1] \cup [-\frac 12, \frac 12]$ is $[-1,1]$, because it contains all elements of both sets.
That is, it all real numbers between $-\frac 12$ and $\frac 12$ are contained in the interval $[-1,1]$.
 
In this case, if you make a drawing of the four intervals, I think it already becomes clearer.
However, we can also strictly use the definition in your first equation. We are asked to prove that
\[
V_1 \cup V_2 \cup V_3 \cup V_4 = [-1,1], \qquad (\ast)
\]
where $V_i = \left[-\frac{1}{i}, \frac{1}{i}\right]$ for $i = 1,\ldots,4$.

1. First consider $x \in [-1,1]$. Then $x \in V_1$ so, by your definition of "union", $x \in V_1 \cup V_2 \cup V_3 \cup V_4$.

2. Next, consider $x \in V_1 \cup V_2 \cup V_3 \cup V_4$. Then $x$ must be in at least one of the $V_i$. No matter in which $V_i$ it is, note that always $x \ge -1$ and $x \le 1$, but this just means that $x \in [-1,1]$.

So, we have established $(\ast)$.

Note that we could also have considered the sets $W_i = \{V_i\}$ for $i = 1,\ldots,4$. That is, each $W_i$ is a set that has exactly one element, and this element is itself a set: $V_i \in W_i$ for $i = 1,\ldots,4$. Try to understand that in this case,
\[
W_1 \cup W_2 \cup W_3 \cup W_4 = \{V_1, V_2, V_3, V_4\},
\]
which is a set consisting of four elements, each element being a set by itself. In particular, the union of the $W_i$ is not equal to the interval $[-1,1]$.
 
In brief, all of those intervals, [math]\left[-\frac{1}{2}, \frac{1}{2}\right][/math], [math]\left[-\frac{1}{3},\frac{1}{3}\right][/math], etc. Are subsets of [-1, 1]. Every member of each interval is already in [-1, 1].
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...

Similar threads

Back
Top