Universal expansion velocity SR or GR?

Click For Summary
SUMMARY

The discussion centers on the applicability of Special Relativity (SR) and General Relativity (GR) in understanding the velocities of distant receding galaxies due to universal expansion. It is established that SR is not suitable for velocities approaching the speed of light in cosmological contexts, as the expansion of the universe creates a scenario where galaxies can recede faster than light without actual motion. The analogy of coins on a balloon illustrates that while galaxies appear to move apart, they are not moving through space in the traditional sense. The consensus is that GR must be employed for accurate calculations involving distant galaxies, as spacetime is not flat in cosmological scenarios.

PREREQUISITES
  • Understanding of Special Relativity (SR) and General Relativity (GR)
  • Familiarity with cosmological principles and universal expansion
  • Knowledge of spacetime concepts and coordinate systems
  • Basic grasp of the Milne model in cosmology
NEXT STEPS
  • Study the implications of General Relativity on cosmological models
  • Explore the Milne model and its relevance to SR and GR
  • Research the concept of comoving coordinates in cosmology
  • Investigate the differences between relativistic mass and rest mass in gravitational contexts
USEFUL FOR

Astronomers, physicists, and students of cosmology seeking to understand the dynamics of universal expansion and the application of relativity in astrophysical contexts.

duordi
Messages
78
Reaction score
0
If I want to consider the velocity of distant receding galaxies which may be receding at velocities close to the speed of light can I use SR? I know you are not suppose to use SR with when velocities are close to the speed of light. If a velocity is due to universal expansion does that make a difference? It would seem not, but I am not sure if a velocity due to universal expansion is really a velocity, just like relitivistic mass is not really mass.
It is a poor example, I know, but it helps with the point.
 
Physics news on Phys.org
duordi said:
If I want to consider the velocity of distant receding galaxies which may be receding at velocities close to the speed of light can I use SR?
No, I don't think you're just allowed to do that, because actually the galaxies are not (only) moving away from us, but the universe expands ("space is being created in between"). A famous analogy is that of coins on a balloon: if you inflate the balloon, the distance between the coins increases, while they are not actually moving relative to each other (if you'd draw a grid on the balloon, the coordinates of the coins would not change). But to an observer on one of those coins, it would seem that the other ones were moving away from him (in all directions, making it seem he was himself at the center of the expansion). In fact, it is possible to have them receding faster than the speed of light, I believe, because there is not actual "motion" involved in the normal sense.

I know you are not suppose to use SR with when velocities are close to the speed of light.
I think you said that the wrong way 'round (or I just understood it that way). SR is exactly meant for the regime where v ~ c.

I am not sure if a velocity due to universal expansion is really a velocity, just like relitivistic mass is not really mass.
As I explained, AFAIK it's not. But not in the same what that "relativistic mass is not really mass".
 
A consequence of GR is that you cannot compare velocities at different spacetime points. The term "speed of recession" is not what it sounds like.
 
Well then GR is out and SR is Ok.
Another question.

In SR, can I calculate gravitational force from a distant mass by using its rest mass or its relativistic mass in Newton’s Gravitation equation?
I don’t think I am suppose to do this.

How can I calculate an acceleration or a force caused by a very distant mass?
Is it possible?
 
duordi said:
If I want to consider the velocity of distant receding galaxies which may be receding at velocities close to the speed of light can I use SR?
I think you must use GR because, IIRC, distant receding galaxies can be receding at velocities much greater than the speed of light. This is possible in GR, but not in SR.
 
I think the problem with using SR is that the spacetime has to be flat, and in the cosmology we observe it is not. In a flat spacetime, say where you only had a "Big Bang" of test particles with no appreciable gravity, you might be able to get away with SR and just note that your perceptions of distant regions are highly length contracted relative to what they perceive locally (a la the "Milne" model), so if you wanted to have a test-particle equivalent of a cosmological principle, you'd have to include that carefully. You would be using a coordinatization where the recession speeds are never superluminal. Note that whether they are faster than c in our own universe is also a coordinate dependent issue-- I believe this was genneth's point that the concept of velocity is not terribly meaningful at distantly separated points, it is just a choice of coordinates. But in our universe, if you choose comoving-frame coordinates where the local coordinate charts follow the gradual separating of the galaxy clusters, the recession rate is faster than c for the most distantly observed galaxies. Could you get that by using comoving frame coordinates in flat spacetime? Perhaps you could.
 
Last edited:
Thanks for mentioning the Milne Model.
I have read several articles about it.
Although it may not be a serious contender for the real universe condition it made the difference between SR and GR results much easier to understand.
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 27 ·
Replies
27
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 22 ·
Replies
22
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K