Unraveling an ODE: Solving a First Order Equation with Separation of Variables

  • Thread starter Thread starter Augustine Duran
  • Start date Start date
  • Tags Tags
    First order Ode
Click For Summary
The discussion focuses on solving the first-order ordinary differential equation (ODE) dx/dt = 8 - 3x with the initial condition x(0) = 4 using separation of variables. The user attempts to integrate and manipulate the equation but struggles with the absolute value in the logarithmic step. Clarification is provided regarding the absolute value, indicating that since x(0) = 4 is greater than 8/3, the expression simplifies to 3x - 8. The user successfully derives the solution x(t) = (8/3) + (4/3)e^(-3t) and is advised that using the linear equation method could simplify the process. The thread concludes with confirmation of the correctness of the derived solution.
Augustine Duran
Messages
39
Reaction score
1

Homework Statement


Solve: ##\frac {dx} {dt}## ##\text{= 8-3x , x(0)=4}##

The Attempt at a Solution



Step 1:
##\int \frac 1 {8-3x} \, dx## = ##\int \, dt##

Step 2:
- ##\frac 1 3## ##\text{ln|8-3x| = t+c}##

From here I am going to try to get it into explicit form

Step 3:
##\text{ln|8-3x| = -3t-3c}##

Step 4:
##e^{ln|8-3x|}## = ##e^{-3t-3c}##

Step 5:
##\text{|8-3x|}## = ##e^{-3t-3c}##

im not sure what to do about the absolute values. I was thinking of cheating and just dropping them and then just solving for x which would give me

Step 6:
##\text{x= }## ##\frac 1 3####\text{(8-}####e^{-3t-3c}####\text{)}##

Plug in initial conditions x(0) = 4

Step 7:
##\text{4= }## ##\frac 1 3####\text{(8-}####e^{-3(0)-3c}####\text{)}##

Step 8: Simplify
##\text{4}##=-##e^{-3c}##

The problem here is that if i take the ln of both sides to solve for C it will be undefined because of the negative sign. Probably dropping the absolute signs in step 6 without a reason is a no no but I am not sure what to do.

Any help would be appreciated.
 
Physics news on Phys.org
Augustine Duran said:

Homework Statement


Solve: ##\frac {dx} {dt}## ##\text{= 8-3x , x(0)=4}##

The Attempt at a Solution



Step 1:
##\int \frac 1 {8-3x} \, dx## = ##\int \, dt##

Step 2:
- ##\frac 1 3## ##\text{ln|8-3x| = t+c}##

From here I am going to try to get it into explicit form

Step 3:
##\text{ln|8-3x| = -3t-3c}##

Step 4:
##e^{ln|8-3x|}## = ##e^{-3t-3c}##

Step 5:
##\text{|8-3x|}## = ##e^{-3t-3c}##

im not sure what to do about the absolute values. I was thinking of cheating and just dropping them
What does the absolute value mean? What is |8-3x| if 3x<8 and when 3x>8? Note that you have different c-s in both cases.
You are given the initial condition, which means that 3x>8.
 
  • Like
Likes Augustine Duran
x(t) =
\begin{cases}
3x-8 & \text{if } x > \frac 8 3 \\
8-3x & \text{if } x \leq \frac 8 3
\end{cases}

okay so seeing that my initial conditions give me x=4 i will be using 3x-8 since 4 is larger than 8/3?

##\text{3x-8 =}####e^{-3t-3c}##

##\text{x =}####\frac 1 3####\text{(8+}####e^{-3t-3c}####\text{)}##

##\text{4 =}####\frac 1 3####\text{(8+}####e^{-3(0)-3c}####\text{)}##

##\text{12 = 8+}####e^{-3c}##

simplify

-##\frac {ln4} 3##=##\text{C}##

is this correct?
 
Augustine Duran said:
x(t) =
\begin{cases}
3x-8 & \text{if } x > \frac 8 3 \\
8-3x & \text{if } x \leq \frac 8 3
\end{cases}

okay so seeing that my initial conditions give me x=4 i will be using 3x-8 since 4 is larger than 8/3?

##\text{3x-8 =}####e^{-3t-3c}##

##\text{x =}####\frac 1 3####\text{(8+}####e^{-3t-3c}####\text{)}##

##\text{4 =}####\frac 1 3####\text{(8+}####e^{-3(0)-3c}####\text{)}##

##\text{12 = 8+}####e^{-3c}##

simplify

-##\frac {ln4} 3##=##\text{C}##

is this correct?

Correct so far; go ahead. What is x(t)?
 
plugging in C and simplifying i get

##\text{x=}####\frac 8 3####\text{+}####\frac 4 3####e^{-3t}##
 
Of course, if you aren't required to use separation of variables, it is much easier to write it as ##x' + 3x = 8## and use the linear equation method of integrating factor. That avoids all the fuss with the absolute value signs and logarithms.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 26 ·
Replies
26
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
3
Views
2K
Replies
4
Views
1K