Unravelling Structure of a Symmetric Matrix

Click For Summary
SUMMARY

The discussion focuses on the analysis of a specific symmetric matrix and its eigenvalues and eigenvectors. The matrix under consideration is characterized by oscillatory behavior in its eigenvectors corresponding to the largest magnitude eigenvalues, while the smallest magnitude eigenvalue exhibits more stable eigenvectors. The participants suggest that the alternating signs in the last row and column of the matrix significantly influence the behavior of the eigenvectors. Experimental modifications to the matrix elements confirm the hypothesis regarding the relationship between the matrix structure and the eigenvector behavior.

PREREQUISITES
  • Understanding of symmetric matrices and their properties
  • Knowledge of eigenvalues and eigenvectors
  • Familiarity with matrix multiplication and dot products
  • Basic experience with numerical experimentation in linear algebra
NEXT STEPS
  • Explore the implications of matrix structure on eigenvector behavior
  • Learn about perturbation theory in relation to eigenvalues
  • Investigate numerical methods for computing eigenvalues and eigenvectors
  • Examine the role of matrix symmetry in linear transformations
USEFUL FOR

Mathematicians, data scientists, and engineers interested in linear algebra, particularly those analyzing the properties of symmetric matrices and their eigenvalues.

thatboi
Messages
130
Reaction score
20
Hey guys,
I was wondering if anyone had any thoughts on the following symmetric matrix:
$$\begin{pmatrix}
0.6 & 0.2 & -0.2 & -0.6 & -1\\
0.2 & -0.2 & -0.2 & 0.2 & 1\\
-0.2 & -0.2 & 0.2 & 0.2 & -1\\
-0.6 & 0.2 & 0.2 & -0.6 & 1\\
-1 & 1 & -1 & 1 & -1
\end{pmatrix}
$$
Notably, when one solves for the eigenvalues and eigenvectors of this matrix, one finds that for the largest magnitude eigenvalues, the eigenvectors demonstrate an oscillatory behavior (the elements within the eigenvector switch between positive and negative), whereas for the smallest magnitude eigenvalue, the eigenvectors have a "nicer" behavior. This most likely has to do with the alternative +/- 1 in the matrix but I can't quite figure it out.
 
Physics news on Phys.org
thatboi said:
Hey guys,
I was wondering if anyone had any thoughts on the following symmetric matrix:
$$\begin{pmatrix}
0.6 & 0.2 & -0.2 & -0.6 & -1\\
0.2 & -0.2 & -0.2 & 0.2 & 1\\
-0.2 & -0.2 & 0.2 & 0.2 & -1\\
-0.6 & 0.2 & 0.2 & -0.6 & 1\\
-1 & 1 & -1 & 1 & -1
\end{pmatrix}
$$
Notably, when one solves for the eigenvalues and eigenvectors of this matrix, one finds that for the largest magnitude eigenvalues, the eigenvectors demonstrate an oscillatory behavior (the elements within the eigenvector switch between positive and negative), whereas for the smallest magnitude eigenvalue, the eigenvectors have a "nicer" behavior. This most likely has to do with the alternative +/- 1 in the matrix but I can't quite figure it out.
I think this hypothesis can be easily tested.
 
Hill said:
I think this hypothesis can be easily tested.
Right, so the last row contributes to the eigenvalue in the sense that it gives the last entry of the resultant column vector when the matrix is multiplied by the eigenvector. So if the eigenvector also has entries that alternates signs, then the dot product between the eigenvector and the last row will result in a "coherent" sum and thus produce a larger number than compared to a different eigenvector with a different configuration of signs. Is this the right way to think about it?
 
thatboi said:
Right, so the last row contributes to the eigenvalue in the sense that it gives the last entry of the resultant column vector when the matrix is multiplied by the eigenvector. So if the eigenvector also has entries that alternates signs, then the dot product between the eigenvector and the last row will result in a "coherent" sum and thus produce a larger number than compared to a different eigenvector with a different configuration of signs. Is this the right way to think about it?
I meant to test it experimentally, by modifying the "suspected" elements and observing how the eigenvectors are affected.
 
Hill said:
I meant to test it experimentally, by modifying the "suspected" elements and observing how the eigenvectors are affected.
Sure, I already did some modifications and it seemed to match what I said above (for example if I put a negative sign on only the second element of the last column and second element of the last row, then the eigenvector corresponding to the largest magnitude eigenvalue only has a negative sign on the second element as well). I was just wondering if there was any more intuition/structure in the matrix beyond what I said above.
 
If you described how you generated that matrix, sometimes there are underlying reasons why certain eigenvectors exist.
 

Similar threads

  • · Replies 33 ·
2
Replies
33
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
6K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
1
Views
1K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K