Unusually Common Dice: Find the Unexpected Ordinary

  • Context: High School 
  • Thread starter Thread starter Jimmy Snyder
  • Start date Start date
  • Tags Tags
    Dice
Click For Summary
SUMMARY

This discussion centers on the analysis of unconventional dice configurations and their probability outcomes compared to standard dice. The unusual dice presented include one with faces numbered 1, 3, 4, 5, 6, 8, and another with faces numbered 1, 2, 2, 3, 3, 4. Participants conclude that the probability distribution for rolling sums from 2 to 12 remains consistent with that of standard dice, despite the differing face values. The conversation also touches on the mathematical principles behind these probabilities, referencing polynomial expansions and the work of Professor Donald Newman.

PREREQUISITES
  • Understanding of basic probability theory
  • Familiarity with polynomial functions and their expansions
  • Knowledge of combinatorial mathematics
  • Experience with recreational mathematics concepts
NEXT STEPS
  • Explore the concept of Sicherman dice and their properties
  • Learn about polynomial factorization techniques in combinatorial contexts
  • Investigate the mathematical foundations of probability distributions in non-standard dice
  • Study the implications of dice configurations on game mechanics and fairness
USEFUL FOR

Mathematicians, game designers, educators in probability and statistics, and enthusiasts of recreational mathematics will benefit from this discussion.

  • #31
shmoe said:
Here's another set, it has 2 dice in common with yours:

1, 1, 1, 2, 2, 2
0, 0, 0, 3, 3, 3
1, 1, 2, 2, 3, 3
0, 0, 2, 2, 4, 4
I was just dealing with the SIX sided dice.
Your above set of four dice is what gives the last column odds results that dosn’t match normal dice.
Since the less than six sided dice you show are a simple reduction of the set that dosn’t work I’d expect it would have fewer permutations but the same wrong odds.

For dice of less than six sides (Or call them coins and three sided rods), I’d reduce “Randall’s Dice”
FROM:
0, 0, 1, 1, 2, 2
0, 0, 0, 3, 3, 3
1, 1, 2, 2, 3, 3
1, 1, 1, 4, 4, 4

and
1, 2, 2, 3, 3, 4
1, 1, 3, 3, 5, 5
0, 0, 0, 3, 3, 3

TO:
0, 1, 2
0, 3
1, 2, 3
1, 4

and
1, 2, 2, 3, 3, 4
1, 3, 5
0, 3

These should all give correct odds to match a normal pair of dice.
 
Mathematics news on Phys.org
  • #32
RandallB said:
I was just dealing with the SIX sided dice.
Your above set of four dice is what gives the last column odds results that dosn’t match normal dice.
Since the less than six sided dice you show are a simple reduction of the set that dosn’t work I’d expect it would have fewer permutations but the same wrong odds.

In that case I disagree. Let's just look at the number of ways you can get a "3" from the dice:

1, 1, 1, 2, 2, 2
0, 0, 0, 3, 3, 3
1, 1, 2, 2, 3, 3
0, 0, 2, 2, 4, 4

The answer should be 72 but you claim the above give 108 ways. The 1st and 3rd dice give at least a total of 2, so the 2nd and 4th must both roll 0, there are 3*2 ways of doing this. So we just need a 3 total from the 1st and 2nd. This is either a 1 from the first and a 2 from the second, 3*2 ways here, or a 2 from the first and a 1 from the second, so 3*2 ways. The total is therefore:3*2*(3*2+3*2)=72.

Or just multiply out the corresponding polynomials:

(3x+3x^2)(3+3x^3)(2x+2x^2+2x^3)(2+2x^2+2x^4)

or factor them and compare my last post.

Alternatively, your 4 dice and my 4 dice had 2 dice in common. Toss them out and just compare the outcomes of the remaining dice, you get the same answer: 6 ways each for a 1, 2, 3, 4, 5, or 6. So if one set is correct, the other is.

I just realize that I completely misinterpreted your 3 dice set, I had thought it was the start of a 4 dice set. So example in my last post doesn't make sense in that regard, but it still illustrates how to use unique factorization to find 4 dice (modifying to any number would be similar).
 
Last edited:
  • #33
shmoe said:
In that case I disagree.
I agree you should disagree.
Don't know what I did wrong when I tested your numbers on the spread sheet - must have been a typo.
You number set came up as I was looking for more variartions of the working number sets. Over a dozen so far.

Here's a good one with a die with no 0 or 1.

000111
000333
001122
224466

Also on the three dice sets best one has only one blank or zero surface in the set as:

011223
113355
111444

Also found a bit of info on Sicherman Dice:
Looks like they were first described by George Sicherman of Buffalo, NY in a 1978 Scientific American column on Mathematical Games by Martin Gardner, who later reprinted it in his book “Penrose Tiles to Trapdoor Ciphers”.

My guess is we won't be able to do this with 5 dice.

RB
 
Last edited:
  • #34
Also shmoe spliting your set of four into two pair thus:
002244
111222

and

001122
111444

Both pair act as a single die.

SO doubling either set like;
001122
111444
001122
111444
as a set of 4 will give same results as a normal pair.
 
  • #35
Personally, I am fond of the sequences that go above 6.
 
  • #36
sum of numbers on opp. sides are equal( also true for normal dice.)
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 48 ·
2
Replies
48
Views
4K
  • · Replies 53 ·
2
Replies
53
Views
9K
  • · Replies 41 ·
2
Replies
41
Views
6K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K