- #1

Magnetons

- 13

- 4

- TL;DR Summary
- L(f,P) ##\leq## L(f,Q) ##\leq## U(f,Q) ##\leq## U(f,P)

**Lemma**

Let f be a bounded function on [a,b]. If P & Q are partitions of [a,b] and P ##\subseteq## Q , then

L(f,P) ##\leq## L(f,Q) ##\leq## U(f,Q) ##\leq## U(f,P) .

Question is "

**How can P have bigger upper darboux sum than Q while it is a subset of Q**"