Use the formal definition to prove that the following sequence diverges

  • Context: MHB 
  • Thread starter Thread starter alexmahone
  • Start date Start date
  • Tags Tags
    Definition Sequence
Click For Summary
SUMMARY

The sequence defined by $\displaystyle s_n=\left(\frac1n-1\right)^n$ diverges as it oscillates between $e^{-1}$ and $-e^{-1}$. A proof by contradiction is established by assuming convergence to a limit $L$ and demonstrating that it leads to conflicting inequalities. Specifically, if $(1-1/n)^n \to 1/e$, then the inequalities derived from the oscillating nature of the sequence yield contradictory bounds for $L$. Thus, the sequence does not converge.

PREREQUISITES
  • Understanding of limits and convergence in sequences
  • Familiarity with the properties of exponential functions
  • Knowledge of the formal definition of convergence
  • Ability to manipulate inequalities and absolute values
NEXT STEPS
  • Study the formal definition of convergence in sequences
  • Learn about the behavior of the sequence $(1-1/n)^n$ as $n$ approaches infinity
  • Explore proofs by contradiction in mathematical analysis
  • Investigate the implications of oscillating sequences on convergence
USEFUL FOR

Mathematics students, educators, and anyone interested in advanced calculus or real analysis, particularly those studying sequences and series convergence.

alexmahone
Messages
303
Reaction score
0
$\displaystyle s_n=\left(\frac1n-1\right)^n$

My attempt:

For large $n$, the sequence oscillates between $e^{-1}$ and $-e^{-1}$ and therefore diverges. Now for the proof.

Assume, for the sake of argument, that the sequence converges to $L$.

$\exists N\in\mathbb{N}$ such that $|s_n-L|<0.1$ whenever $n\ge N$

$\displaystyle\left|\left(\frac1n-1\right)^n-L\right|<0.1$ whenever $n\ge N$

$\displaystyle\implies\left|\left(\frac1{n+1}-1\right)^{n+1}-L\right|<0.1$ whenever $n\ge N$

We can rewrite these 2 equations as

$\displaystyle\left|(-1)^n\left(1-\frac1n\right)^n-L\right|<0.1$ whenever $n\ge N$ --------------- (1)

$\displaystyle\left|(-1)^{n+1}\left(1-\frac1{n+1}\right)^{n+1}-L\right|<0.1$ whenever $n\ge N$

$\displaystyle\implies\left|(-1)^n\left(1-\frac1{n+1}\right)^{n+1}+L\right|<0.1$ whenever $n\ge N$ --------------- (2)

How do I get a contradiction from equations (1) and (2)?
 
Physics news on Phys.org
Alexmahone said:
$\displaystyle\left|(-1)^n\left(1-\frac1n\right)^n-L\right|<0.1$ whenever $n\ge N$ --------------- (1)

$\displaystyle\left|(-1)^{n+1}\left(1-\frac1{n+1}\right)^{n+1}-L\right|<0.1$ whenever $n\ge N$

$\displaystyle\implies\left|(-1)^n\left(1-\frac1{n+1}\right)^{n+1}+L\right|<0.1$ whenever $n\ge N$ --------------- (2)

How do I get a contradiction from equations (1) and (2)?
If it is known that $(1-1/n)^n\to1/e$, then you can reason as follows. Suppose $|(1-1/n)^n-1/e|\le0.1$ for all $n\ge N$ (we can achieve this increasing $N$ if necessary). Then (1) with an even $n$ implies that $|L-1/e|<0.2$ and therefore $L>1/e-0.2>0$ and (2) implies that $|(-L)-1/e|<0.2$ and therefore $L<-1/e+0.2<0$, which is a contradiction.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K