MHB Use the formal definition to prove that the following sequence diverges

Click For Summary
The sequence \( s_n = \left(\frac{1}{n} - 1\right)^n \) diverges as it oscillates between \( e^{-1} \) and \( -e^{-1} \) for large \( n \). Assuming convergence to a limit \( L \) leads to a contradiction when applying the formal definition of convergence. By manipulating the inequalities derived from the sequence's behavior, it is shown that \( L \) must simultaneously be greater than \( 0 \) and less than \( 0 \), which is impossible. Thus, the sequence does not converge and is proven to diverge. The analysis effectively demonstrates the divergence using properties of limits and inequalities.
alexmahone
Messages
303
Reaction score
0
$\displaystyle s_n=\left(\frac1n-1\right)^n$

My attempt:

For large $n$, the sequence oscillates between $e^{-1}$ and $-e^{-1}$ and therefore diverges. Now for the proof.

Assume, for the sake of argument, that the sequence converges to $L$.

$\exists N\in\mathbb{N}$ such that $|s_n-L|<0.1$ whenever $n\ge N$

$\displaystyle\left|\left(\frac1n-1\right)^n-L\right|<0.1$ whenever $n\ge N$

$\displaystyle\implies\left|\left(\frac1{n+1}-1\right)^{n+1}-L\right|<0.1$ whenever $n\ge N$

We can rewrite these 2 equations as

$\displaystyle\left|(-1)^n\left(1-\frac1n\right)^n-L\right|<0.1$ whenever $n\ge N$ --------------- (1)

$\displaystyle\left|(-1)^{n+1}\left(1-\frac1{n+1}\right)^{n+1}-L\right|<0.1$ whenever $n\ge N$

$\displaystyle\implies\left|(-1)^n\left(1-\frac1{n+1}\right)^{n+1}+L\right|<0.1$ whenever $n\ge N$ --------------- (2)

How do I get a contradiction from equations (1) and (2)?
 
Physics news on Phys.org
Alexmahone said:
$\displaystyle\left|(-1)^n\left(1-\frac1n\right)^n-L\right|<0.1$ whenever $n\ge N$ --------------- (1)

$\displaystyle\left|(-1)^{n+1}\left(1-\frac1{n+1}\right)^{n+1}-L\right|<0.1$ whenever $n\ge N$

$\displaystyle\implies\left|(-1)^n\left(1-\frac1{n+1}\right)^{n+1}+L\right|<0.1$ whenever $n\ge N$ --------------- (2)

How do I get a contradiction from equations (1) and (2)?
If it is known that $(1-1/n)^n\to1/e$, then you can reason as follows. Suppose $|(1-1/n)^n-1/e|\le0.1$ for all $n\ge N$ (we can achieve this increasing $N$ if necessary). Then (1) with an even $n$ implies that $|L-1/e|<0.2$ and therefore $L>1/e-0.2>0$ and (2) implies that $|(-L)-1/e|<0.2$ and therefore $L<-1/e+0.2<0$, which is a contradiction.
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K