bagram
- 5
- 0
Homework Statement
Given a certain poincare map, show that it is area preserving for all values of r
Homework Equations
\binom{x_{n+1}}{y_{n+1}}=\begin{pmatrix}e^{r} & 0 \\ 0 & e^{-r} \end{pmatrix}\begin{pmatrix}cos(\phi+I_{n}) & -sin(\phi+I_{n}) \\ sin(\phi+I_{n}) & cos(\phi+I_{n}) \end{pmatrix}\begin{pmatrix}x_{n}\\ y_{n} \end{pmatrix}
where
I_{n}=x_{n}^2+y_{n}^2
The Attempt at a Solution
I tried to prove that the determinant \binom{x_{n+1}}{y_{n+1}}=\begin{pmatrix}e^{r} & 0 \\ 0 & e^{-r} \end{pmatrix}\begin{pmatrix}cos(\phi+I_{n}) & -sin(\phi+I_{n}) \\ sin(\phi+I_{n}) & cos(\phi+I_{n}) \end{pmatrix} is equal to 1, I believe that is wrong since the I in the matrix is X^2+Y^2, so I was wondering should i use the Poisson bracket method?