MHB Using Log Laws and values to compute this compution

  • Thread starter Thread starter cbarker1
  • Start date Start date
  • Tags Tags
    Laws Log
AI Thread Summary
The discussion focuses on using logarithmic properties to compute the value of N, defined as N = 0.009292 / (√[3]{582400} + 14.23). Participants explore how to express log(N) as the difference of two logarithms: log(0.009292) and log(√[3]{582400} + 14.23). A key point raised is how to handle the logarithm after the subtraction, particularly in simplifying the cube root term. The expected answer is noted as 9.507 * 10^(-4), prompting further inquiry into the calculation steps. The conversation emphasizes the application of log laws for accurate computation.
cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
Using logs to compute the following, to the four-figure accuracy. $\frac{.009292}{(\sqrt[3]{582400}+14.23)}$

Let N=$\frac{.009292}{(\sqrt[3]{582400}+14.23)}$, then
$\log\left({N}\right)=\log\left({\frac{.009292}{(\sqrt[3]{582400}+14.23)}
}\right)$.

Log N=

$\log\left({.09292}\right)-\log\left({\sqrt[3]{582400}+14.23}\right)$

What to do with the logarithm after the subtraction sign?the answer in the back of the book is 9.507*10^(-4)
 
Last edited:
Mathematics news on Phys.org
Cbarker1 said:
Using logs to compute the following, to the four-figure accuracy. $\frac{.009292}{(\sqrt[3]{582400}+14.23)}$

Let N=$\frac{.009292}{(\sqrt[3]{582400}+14.23)}$, then
$\log\left({N}\right)=\log\left({\frac{.009292}{(\sqrt[3]{582400}+14.23)}
}\right)$.

Log N=

$\log\left({.09292}\right)-\log\left({\sqrt[3]{582400}+14.23}\right)$

What to do with the logarithm after the subtraction sign?

You might substitute:
$$\sqrt[3]{582400} = 10^{\log(\sqrt[3]{582400})} = 10^{\frac 1 3 \log 582400}$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Replies
2
Views
3K
Replies
3
Views
2K
Replies
15
Views
3K
Replies
1
Views
2K
Replies
2
Views
2K
Replies
3
Views
2K
Replies
1
Views
1K
Back
Top