MHB Using Social Media to Increase Your Business Profits

Albert1
Messages
1,221
Reaction score
0

Attachments

  • Find MN.JPG
    Find MN.JPG
    21.5 KB · Views: 105
Mathematics news on Phys.org
Here is my solution using integral calculus:

Without loss of generality, I choose to let the trapezoid to be mapped to the first quadrant region bounded by the coordinate axes, the line $x=1$ and the line $y=-2\sqrt{2}x+8\sqrt{2}$.

Next, choose a value $x=c$ such that:

$$\int_0^c-2\sqrt{2}x+8\sqrt{2}\,dx=\int_c^1-2\sqrt{2}x+8\sqrt{2}\,dx$$

Applying the FTOC, we find:

$$-\sqrt{2}c^2+8\sqrt{2}c=-\sqrt{2}+8\sqrt{2}-\left(-\sqrt{2}c^2+8\sqrt{2}c \right)$$

After simplifying, we have:

$$2c^2-16c+7=0$$

Taking the root such that $$0\le c\le1$$ we obtain:

$$c=4-\frac{5}{\sqrt{2}}$$

Hence:

$$\overline{MN}=y\left(4-\frac{5}{\sqrt{2}} \right)=-2\sqrt{2}\left(4-\frac{5}{\sqrt{2}} \right)+8\sqrt{2}=10$$
 

Attachments

  • MN.JPG
    MN.JPG
    22 KB · Views: 78

Similar threads

  • · Replies 43 ·
2
Replies
43
Views
831
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 4 ·
Replies
4
Views
897
  • · Replies 14 ·
Replies
14
Views
2K
Replies
21
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K