Without loss of generality, I choose to let the trapezoid to be mapped to the first quadrant region bounded by the coordinate axes, the line $x=1$ and the line $y=-2\sqrt{2}x+8\sqrt{2}$.
I just saw this one. If there are finitely many primes, then
##0<\prod_{p}\sin(\frac\pi p)=\prod_p\sin\left(\frac{\pi(1+2\prod_q q)}p\right)=0##
Of course it is in a way just a variation of Euclid's idea, but it is a one liner.