MHB Using vector notation describe a triangle

Click For Summary
To describe a triangle in space using vector notation with vertices at the origin and the endpoints of vectors a and b, the two sides of the triangle are represented by these vectors. The final side can be expressed as the vector from the endpoint of vector a to the endpoint of vector b, calculated as (b_x - a_x, b_y - a_y, b_z - a_z). This side can also be written in terms of vectors a and b as (b - a). Additionally, an alternative method involves expressing any point within the triangle as a combination of the vectors a and b, using parameters that ensure the point lies within the triangle. Understanding both representations is crucial for comprehending the geometric properties of the triangle formed by these vectors.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Using vector notation describe a triangle ( in space ) that has as vertices the origin and the endpoints of the vectors $\overrightarrow{a}$ and $\overrightarrow{b}$.

Could you tell me what I am supposed to do?? (Wondering)
 
Physics news on Phys.org
mathmari said:
Hey! :o

Using vector notation describe a triangle ( in space ) that has as vertices the origin and the endpoints of the vectors $\overrightarrow{a}$ and $\overrightarrow{b}$.

Could you tell me what I am supposed to do?? (Wondering)

$\displaystyle \begin{align*} \mathbf{a} \end{align*}$ is a vector starting at (0, 0, 0) and ending at $\displaystyle \begin{align*} \left( a_x , a_y , a_z \right) \end{align*}$, and $\displaystyle \begin{align*} \mathbf{b} \end{align*}$ is a vector starting at (0, 0, 0) and ending at $\displaystyle \begin{align*} \left( b_x, b_y, b_z \right) \end{align*}$.

Obviously two of the sides of the triangle are the vectors $\displaystyle \begin{align*} \mathbf{a} \end{align*}$ and $\displaystyle \begin{align*} \mathbf{b} \end{align*}$. What is the final side? i.e. can you write a vector that starts at $\displaystyle \begin{align*} \left( a_x, a_y, a_z \right) \end{align*}$ and ends at $\displaystyle \begin{align*} \left( b_x, b_y, b_z \right) \end{align*}$?
 
Prove It said:
$\displaystyle \begin{align*} \mathbf{a} \end{align*}$ is a vector starting at (0, 0, 0) and ending at $\displaystyle \begin{align*} \left( a_x , a_y , a_z \right) \end{align*}$, and $\displaystyle \begin{align*} \mathbf{b} \end{align*}$ is a vector starting at (0, 0, 0) and ending at $\displaystyle \begin{align*} \left( b_x, b_y, b_z \right) \end{align*}$.

Obviously two of the sides of the triangle are the vectors $\displaystyle \begin{align*} \mathbf{a} \end{align*}$ and $\displaystyle \begin{align*} \mathbf{b} \end{align*}$. What is the final side? i.e. can you write a vector that starts at $\displaystyle \begin{align*} \left( a_x, a_y, a_z \right) \end{align*}$ and ends at $\displaystyle \begin{align*} \left( b_x, b_y, b_z \right) \end{align*}$?

The final side is $\displaystyle \begin{align*} \left( b_x-a_x, b_y-a_y, b_z-a_z \right) \end{align*}$, right?? (Wondering)
 
mathmari said:
The final side is $\displaystyle \begin{align*} \left( b_x-a_x, b_y-a_y, b_z-a_z \right) \end{align*}$, right?? (Wondering)

Yes, and can you write this in terms of $\displaystyle \begin{align*} \mathbf{a} \end{align*}$ and $\displaystyle \begin{align*} \mathbf{b} \end{align*}$?
 
Prove It said:
Yes, and can you write this in terms of $\displaystyle \begin{align*} \mathbf{a} \end{align*}$ and $\displaystyle \begin{align*} \mathbf{b} \end{align*}$?

Is it $\displaystyle \begin{align*} \mathbf{b}-\mathbf{a} \end{align*}$ ?? (Wondering)
 
mathmari said:
Is it $\displaystyle \begin{align*} \mathbf{b}-\mathbf{a} \end{align*}$ ?? (Wondering)

Yes :)
 
I see... Thanks! (Smile)

The prof showed us an other way to solve it...

View attachment 4038

$\overrightarrow{v}=\overrightarrow{OK}=t\overrightarrow{OM}, 0 \leq t \leq 1$

$\overrightarrow{OM}=s \overrightarrow{a}+(1-s)\overrightarrow{b}, 0 \leq s \leq 1$

So, $\overrightarrow{v}=(ts)\overrightarrow{a}+t(1-s)\overrightarrow{b}=x \overrightarrow{a}+y \overrightarrow{b}$
where $x=ts, y=t(1-s)$
and therefore $x \geq 0, y \geq 0, x+y \leq 1$. Conversely, if $\overrightarrow{v}=x\overrightarrow{a}+y\overrightarrow{b}, x \geq 0, y \geq 0, x+y \leq 1$ then we set $t=x+y$ then $0 \leq t \leq 1$, and $s=\frac{x}{t}$, so $1-s=\frac{y}{t}$, and so $0 \leq s \leq 1$ and $\overrightarrow{v}=t(s\overrightarrow{a}+(1-s)\overrightarrow{b})$
So, $K$ belongs to the triangle. Could you explain to me this way?? (Wondering)

Why do we have to show both directions?? (Wondering)
 

Attachments

  • triangle.png
    triangle.png
    2.1 KB · Views: 117
Why do we take the points $K$ and $M$ ?? (Wondering)
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
8K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
2K