Using vector notation describe a triangle

Click For Summary

Discussion Overview

The discussion centers on describing a triangle in space using vector notation, specifically with vertices at the origin and the endpoints of two vectors, $\overrightarrow{a}$ and $\overrightarrow{b}$. Participants explore the relationships between the vectors and the sides of the triangle, as well as alternative methods for representation.

Discussion Character

  • Exploratory, Technical explanation, Conceptual clarification, Debate/contested

Main Points Raised

  • Participants discuss how to represent the triangle's sides using the vectors $\overrightarrow{a}$ and $\overrightarrow{b}$, with two sides being the vectors themselves.
  • One participant asks for the vector that represents the final side of the triangle, which leads to the suggestion that it could be $\left( b_x-a_x, b_y-a_y, b_z-a_z \right)$.
  • Another participant confirms that the final side can be expressed as $\mathbf{b} - \mathbf{a}$.
  • A different approach is introduced involving parameters $t$ and $s$, leading to a representation of points within the triangle as a combination of the vectors $\overrightarrow{a}$ and $\overrightarrow{b}$.
  • Questions arise regarding the necessity of demonstrating both directions in the alternative method and the choice of points $K$ and $M$ in the context of the triangle.

Areas of Agreement / Disagreement

Participants generally agree on the representation of the triangle's sides using the vectors, but there is no consensus on the necessity of showing both directions in the alternative method or the selection of specific points.

Contextual Notes

The discussion includes various assumptions about the properties of the vectors and the triangle, but these assumptions are not fully resolved or explicitly stated by all participants.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Using vector notation describe a triangle ( in space ) that has as vertices the origin and the endpoints of the vectors $\overrightarrow{a}$ and $\overrightarrow{b}$.

Could you tell me what I am supposed to do?? (Wondering)
 
Physics news on Phys.org
mathmari said:
Hey! :o

Using vector notation describe a triangle ( in space ) that has as vertices the origin and the endpoints of the vectors $\overrightarrow{a}$ and $\overrightarrow{b}$.

Could you tell me what I am supposed to do?? (Wondering)

$\displaystyle \begin{align*} \mathbf{a} \end{align*}$ is a vector starting at (0, 0, 0) and ending at $\displaystyle \begin{align*} \left( a_x , a_y , a_z \right) \end{align*}$, and $\displaystyle \begin{align*} \mathbf{b} \end{align*}$ is a vector starting at (0, 0, 0) and ending at $\displaystyle \begin{align*} \left( b_x, b_y, b_z \right) \end{align*}$.

Obviously two of the sides of the triangle are the vectors $\displaystyle \begin{align*} \mathbf{a} \end{align*}$ and $\displaystyle \begin{align*} \mathbf{b} \end{align*}$. What is the final side? i.e. can you write a vector that starts at $\displaystyle \begin{align*} \left( a_x, a_y, a_z \right) \end{align*}$ and ends at $\displaystyle \begin{align*} \left( b_x, b_y, b_z \right) \end{align*}$?
 
Prove It said:
$\displaystyle \begin{align*} \mathbf{a} \end{align*}$ is a vector starting at (0, 0, 0) and ending at $\displaystyle \begin{align*} \left( a_x , a_y , a_z \right) \end{align*}$, and $\displaystyle \begin{align*} \mathbf{b} \end{align*}$ is a vector starting at (0, 0, 0) and ending at $\displaystyle \begin{align*} \left( b_x, b_y, b_z \right) \end{align*}$.

Obviously two of the sides of the triangle are the vectors $\displaystyle \begin{align*} \mathbf{a} \end{align*}$ and $\displaystyle \begin{align*} \mathbf{b} \end{align*}$. What is the final side? i.e. can you write a vector that starts at $\displaystyle \begin{align*} \left( a_x, a_y, a_z \right) \end{align*}$ and ends at $\displaystyle \begin{align*} \left( b_x, b_y, b_z \right) \end{align*}$?

The final side is $\displaystyle \begin{align*} \left( b_x-a_x, b_y-a_y, b_z-a_z \right) \end{align*}$, right?? (Wondering)
 
mathmari said:
The final side is $\displaystyle \begin{align*} \left( b_x-a_x, b_y-a_y, b_z-a_z \right) \end{align*}$, right?? (Wondering)

Yes, and can you write this in terms of $\displaystyle \begin{align*} \mathbf{a} \end{align*}$ and $\displaystyle \begin{align*} \mathbf{b} \end{align*}$?
 
Prove It said:
Yes, and can you write this in terms of $\displaystyle \begin{align*} \mathbf{a} \end{align*}$ and $\displaystyle \begin{align*} \mathbf{b} \end{align*}$?

Is it $\displaystyle \begin{align*} \mathbf{b}-\mathbf{a} \end{align*}$ ?? (Wondering)
 
mathmari said:
Is it $\displaystyle \begin{align*} \mathbf{b}-\mathbf{a} \end{align*}$ ?? (Wondering)

Yes :)
 
I see... Thanks! (Smile)

The prof showed us an other way to solve it...

View attachment 4038

$\overrightarrow{v}=\overrightarrow{OK}=t\overrightarrow{OM}, 0 \leq t \leq 1$

$\overrightarrow{OM}=s \overrightarrow{a}+(1-s)\overrightarrow{b}, 0 \leq s \leq 1$

So, $\overrightarrow{v}=(ts)\overrightarrow{a}+t(1-s)\overrightarrow{b}=x \overrightarrow{a}+y \overrightarrow{b}$
where $x=ts, y=t(1-s)$
and therefore $x \geq 0, y \geq 0, x+y \leq 1$. Conversely, if $\overrightarrow{v}=x\overrightarrow{a}+y\overrightarrow{b}, x \geq 0, y \geq 0, x+y \leq 1$ then we set $t=x+y$ then $0 \leq t \leq 1$, and $s=\frac{x}{t}$, so $1-s=\frac{y}{t}$, and so $0 \leq s \leq 1$ and $\overrightarrow{v}=t(s\overrightarrow{a}+(1-s)\overrightarrow{b})$
So, $K$ belongs to the triangle. Could you explain to me this way?? (Wondering)

Why do we have to show both directions?? (Wondering)
 

Attachments

  • triangle.png
    triangle.png
    2.1 KB · Views: 133
Why do we take the points $K$ and $M$ ?? (Wondering)
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
8K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K