Valid Arguments: Sets Explained

  • Context: MHB 
  • Thread starter Thread starter ertagon2
  • Start date Start date
  • Tags Tags
    Sets
Click For Summary
SUMMARY

This discussion clarifies the validity of various logical arguments involving sets and implications. It confirms the correctness of Modus Tollens, Transitivity, and addresses the Converse Fallacy. The participants emphasize the distinction between subset relations and element relations, particularly in the context of nested sets. The conclusion drawn is that the notation $\therefore \; p \implies r$ is appropriate for indicating logical conclusions, rather than using $p \therefore r$ which may imply that $p$ is true.

PREREQUISITES
  • Understanding of logical implications (e.g., Modus Tollens, Transitivity)
  • Familiarity with set theory concepts (e.g., subset $\subset$, element $\in$)
  • Knowledge of logical notation (e.g., $\therefore$, $\implies$)
  • Basic experience with nested sets and their properties
NEXT STEPS
  • Study the principles of logical reasoning in depth, focusing on Modus Ponens and Modus Tollens.
  • Explore advanced set theory, particularly the differences between subsets and elements.
  • Learn about formal proof techniques in mathematics, including direct and indirect proofs.
  • Investigate the implications of logical notation in mathematical arguments and proofs.
USEFUL FOR

Students of mathematics, logic enthusiasts, educators teaching set theory and logic, and anyone seeking to improve their understanding of logical arguments and set relations.

ertagon2
Messages
36
Reaction score
0
View attachment 7799
is this right ?6(1).
p$\implies$q,
$\lnot$q$\therefore\lnot$p,
Modus tollens

6(2).
p$\implies$q,
q$\implies$r,
q$\therefore$r,
Transitivity

6(3).
p$\implies$q,
q$\therefore$p.
Converse fallacy

7. I have no idea what I'm doing please explain.
 

Attachments

  • mathsq3.png
    mathsq3.png
    20.9 KB · Views: 149
Physics news on Phys.org
ertagon2 said:
is this right ?6(1).
p$\implies$q,
$\lnot$q$\therefore\lnot$p,
Modus tollens

6(2).
p$\implies$q,
q$\implies$r,
q$\therefore$r,
Transitivity

I think you mean $\therefore \; p\implies r$, right?

ertagon2 said:
6(3).
p$\implies$q,
q$\therefore$p.
Converse fallacy

This is all correct.

ertagon2 said:
7. I have no idea what I'm doing please explain.

The subset $\subset$ relation works like this: $A\subset B$ if and only if every element of $A$ is an element of $B$. So, for 7.A., look at every element of the set $\{1,2\}$, and see if they are in $A$ (they are). 7.B. is trickier. The relation "is an element of", $\in$, works differently from the $\subset$ relation. Sets can be elements of other sets, or they can be subsets of other sets. Neither implies the other. In this case, because $A=\{1,2,\{1,2\}\}$, and you have that nested $\{1,2\}$ sitting inside, then it follows that $\{1,2\}$ is an element of $A$. For something to be an element of another set, it's got to show up at the highest level, separated from other elements by commas. So, for example, if you define the set $C=\{1,2,\{3,4\}\}$, then the elements of $C$ are $1$, $2$, and $\{3,4\}$. Neither $3$ nor $4$ are elements of $C$. Does this help? Can you see why 7.C. is true and 7.D. is false?
 
Ackbach said:
I think you mean $\therefore \; p\implies r$, right?
This is all correct.
The subset $\subset$ relation works like this: $A\subset B$ if and only if every element of $A$ is an element of $B$. So, for 7.A., look at every element of the set $\{1,2\}$, and see if they are in $A$ (they are). 7.B. is trickier. The relation "is an element of", $\in$, works differently from the $\subset$ relation. Sets can be elements of other sets, or they can be subsets of other sets. Neither implies the other. In this case, because $A=\{1,2,\{1,2\}\}$, and you have that nested $\{1,2\}$ sitting inside, then it follows that $\{1,2\}$ is an element of $A$. For something to be an element of another set, it's got to show up at the highest level, separated from other elements by commas. So, for example, if you define the set $C=\{1,2,\{3,4\}\}$, then the elements of $C$ are $1$, $2$, and $\{3,4\}$. Neither $3$ nor $4$ are elements of $C$. Does this help? Can you see why 7.C. is true and 7.D. is false?

So I did answer everything correctly?
Can you please explain 6.(3)
Why is it $\therefore$p$\implies$r rather than p$\therefore$r <--this is what I meant
 
ertagon2 said:
So I did answer everything correctly?

Yes, I think so.

ertagon2 said:
Can you please explain 6.(3)
Why is it $\therefore$p$\implies$r rather than p$\therefore$r <--this is what I meant

The problem with writing $p\therefore r$ is that it is confusing. Someone looking at that might think you've concluded that $p$ is actually true, whereas it's only ever an assumption in the entire argument. Moreover, the word "therefore" or symbol $\therefore$ is meant to indicate that what follows is the conclusion. It's not usually meant to be used as part of the conclusion, or in the middle of it. Does that help?
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K