MHB Value of b, y-intercept of Quadratic graph

Click For Summary
To find the value of b in the quadratic equation y = x^2 + ax + b, given that the graph crosses the x-axis at (2, 0) and (4, 0), we can derive two equations from these points. Substituting x = 2 into the equation gives 2a + b = -4, and substituting x = 4 results in 4a + b = -16. By solving these simultaneous equations, we can isolate a and b. The solution reveals the value of b as 8. Understanding this process clarifies the relationship between the coefficients and the graph's intercepts.
gazparkin
Messages
17
Reaction score
0
Hi,

Can anyone help me understand how I get to the answer on this one?

The diagram shows a sketch of the graph of y = x2 + ax + b

The graph crosses the x-axis at (2, 0) and (4, 0).

Work out the value of b.Thank you in advance!
 

Attachments

  • Graph.jpg
    Graph.jpg
    10.3 KB · Views: 129
Mathematics news on Phys.org
$$y=(x - 2)(x - 4)=x^2-6x+8$$
 
The graph is of y= x^2+ ax+ b and we are told that the graph goes through (2, 0). That means that when x= 2, y= 0. So we must have 0= 2^2+ a(2)+ b= 4+ 2a+ b or 2a+ b= -4. We are also told that the graph goes through (4, 0). That means that when x= 4, y= 0. So we must have 0= 4^2+ a(4)+ b= 16+ 4a+ b or 4a+ b= -16.

Solve the two equations, 2a+ b= -4 and 4a+ b= -16, for a and b.
 
HallsofIvy said:
The graph is of y= x^2+ ax+ b and we are told that the graph goes through (2, 0). That means that when x= 2, y= 0. So we must have 0= 2^2+ a(2)+ b= 4+ 2a+ b or 2a+ b= -4. We are also told that the graph goes through (4, 0). That means that when x= 4, y= 0. So we must have 0= 4^2+ a(4)+ b= 16+ 4a+ b or 4a+ b= -16.

Solve the two equations, 2a+ b= -4 and 4a+ b= -16, for a and b.

Thank you for this - really helped me understand.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K