MHB Value of Irrational Number π (Part 1)

mathdad
Messages
1,280
Reaction score
0
The value of irrational number π, correct to ten decimal places (without rounding), is 3.1415926535. By using your calculator, determine to how many decimal places the following quantity [(4/3)^4] agrees with π.

The value used for π in the Rhind papyrus, an ancient Babylonian text written about 1650 B.C. is (4/3)^4.

I was wondering if this question can be answered without a calculator. Can we show that (4/3)^4 in terms of decimal places agrees with pi?
 
Last edited:
Mathematics news on Phys.org
Where do you need help with this problem?
 
Evgeny.Makarov said:
Where do you need help with this problem?

I was wondering if this question can be answered without a calculator. Can we show that (4/3)^4 in terms of decimal places agrees with pi?
 
RTCNTC said:
I was wondering if this question can be answered without a calculator.
Then this should be said in the original question to not make people guess.

RTCNTC said:
Can we show that (4/3)^4 in terms of decimal places agrees with pi?
You can use long division to compute $$\left(\frac43\right)^4=\frac{256}{81}$$ to a few decimal places.
 
Evgeny.Makarov said:
Then this should be said in the original question to not make people guess.

You can use long division to compute $$\left(\frac43\right)^4=\frac{256}{81}$$ to a few decimal places.

The original question has been edited.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
4
Views
2K
Replies
4
Views
1K
Replies
1
Views
2K
Replies
12
Views
2K
Replies
11
Views
3K
Replies
4
Views
3K
Replies
8
Views
2K
Back
Top