Calculating trigonometry without calculator?

  • B
  • Thread starter Xforce
  • Start date
  • #1
Xforce
73
6
TL;DR Summary
Trigonometry is vital for calculating angles and lengths, but unfortunately sometimes I forgot my calculator, what should I do?
Speaking of trigonometry without a calculator, I usually only memorizes the trig values of 30°, 45° and 60°. then by I can apply basic equations and applying to polygons or other geometry shapes I can get trig values for angles like 15° Or 75°. When people have enough time, people on Wikipedia even got the exact value of any degrees divisible by 3. However, constructing a 120-sided polygon takes way too long...
In some cases, for random degrees, it usually wants to get an estimated value, not an exact value. These manual calculations usually gives off a exact value... if we combine them using equations like sin(a+b)=sina*cosb+sinb*cosa and use a trial-and-error method, until we get the number of decimals we want, it will be too complicated. Despite that, estimating a surd is also hard.
So, is it possible to efficiently calculate the estimate of a trig ratio of random numbers? How does calculators do it? And how ancient people calculate them before the invention of computers?
 

Answers and Replies

  • #2
fresh_42
Mentor
Insights Author
2022 Award
17,797
18,976
So, is it possible to efficiently calculate the estimate of a trig ratio of random numbers?
One way is to use their Taylor expansions.
How does calculators do it?
IIRC they use certain algorithms which are more efficient than Taylor, but I have forgotten which.
And how ancient people calculate them before the invention of computers?
They didn't. They only had certain values: the ratios in a right triangle with integer side lengths. Euclid's geometry is done by ruler and compass, not by numeric.
 
  • #3
36,295
13,372
That depends on what you call "efficiently". The simplest concept is a Taylor series but it isn't very efficient in terms of number of calculations. A standard computer algorithm is CORDIC but that relies on tables of some pre-computed values stored somewhere.
 
  • #4
FactChecker
Science Advisor
Homework Helper
Gold Member
7,728
3,397
Without a computer, there are half-angle formulas and angle sum formulas that can be used to get values. Early mathematicians used to hire idiot savants who could generate tables. The savants could not describe how they were doing the calculations in any way that a normal person could understand.
 
  • #5
symbolipoint
Homework Helper
Education Advisor
Gold Member
7,010
1,611
SLIDERULE, if you know how and if you have one
 
  • Like
Likes Keith_McClary, fresh_42 and FactChecker
  • #7
DEvens
Education Advisor
Gold Member
1,203
460
When computers were still many-millions of $, there were tables. You looked up the value closest to what you wanted in the table. If you needed more accuracy you used various standard formulas and interpolated. For certain special values or special ranges you used other formulas. Such as for very small angles and the sin() or tan() functions, or angles close to pi/2 for the cos() function.

The same general process was used for logs. There are entire books of similar tables, various other special functions as well such as Bessel functions and so on.

In public school, mumble years ago, when personal computer power simply was not available, I started in memorizing the log tables. I had read a science fiction story about a "boy scout on the moon" or some such. He had managed to solve his problem in his head by using memorized log tables. If you recall that you can multiply two numbers by taking the log of each, adding them, then getting the inverse-log, a log table in your head let's you do a lot of fairly complicated arithmetic. Sadly, my memory was not really up to the task.

Which reminds me of a joke. The forest ranger noticed that a certain kind of snake in his park was not successfully breeding. The tourists visiting the park were disturbing them at just the wrong moment, and nobody was happy about that, since the snakes were likely to be aggressive in such situations. So he invented a particular type of picnic bench-and-table that would allow the tourists to sit on it, and the snakes could safely hide in a compartment under the table and be undisturbed by the tourists. And an attractive feature of these picnic surfaces was they could be easily constructed from local materials. Thus leading to the moral of the story: log tables were invented so that adders could multiply.
 
  • Like
  • Haha
Likes Keith_McClary, Nik_2213 and FactChecker
  • #8
PeroK
Science Advisor
Homework Helper
Insights Author
Gold Member
2022 Award
24,026
15,718
In my first year at secondary school we had Miss Rankine for maths. One of the few things I can remember from that class is that the part of the logarithm after the decimal point is called the "mantissa".
 

Suggested for: Calculating trigonometry without calculator?

Replies
15
Views
683
  • Last Post
Replies
3
Views
520
  • Last Post
Replies
1
Views
561
Replies
2
Views
302
Replies
6
Views
400
Replies
8
Views
373
  • Last Post
Replies
2
Views
572
Replies
4
Views
405
  • Last Post
Replies
2
Views
499
Replies
1
Views
693
Top