MHB Value of lambda in quadratic equation

AI Thread Summary
The discussion centers on determining the value of λ in the quadratic equation related to the sides of a scalene triangle. It is established that for the equation to have real and distinct roots, the discriminant must be positive, leading to the inequality involving λ. Through manipulation of the scalene triangle conditions, it is concluded that the ratio of the sum of squares of the sides to the product of the sums must be less than 2. This results in the final conclusion that λ must be less than 4/3. Therefore, the value of λ is constrained to λ < 4/3.
juantheron
Messages
243
Reaction score
1
If $a,b,c$ are the length of the sides of an scalene triangle, If the equation

$x^2+2(a+b+c)x+3\lambda\left(ab+bc+ca\right) = 0$ has real and distinct roots,

Then the value of $\lambda$ is given by

Options::

(a) $\displaystyle \lambda < \frac{4}{3}\;\;\;\;\; $ (b)$\displaystyle \frac{11}{3}< \lambda < \frac{17}{3}\;\;\;\;\;\;$ (c) $ \lambda \geq 1\;\;\;\;\;\;$ (d)$ \displaystyle \frac{11}{3}< \lambda < \frac{17}{3}$

My Try:: Given that $\triangle$ is scalene means $a+b>c$ and $b+c>a$ and $c+a>b$

and given equation has real and distinct roots, Then $D>0$

So $\displaystyle 4(a+b+c)^2-4\cdot 3 \lambda \left(ab+bc+ca\right)>0$

So $(a+b+c)^2 - 3\lambda \left(ab+bc+ca\right)>0\Rightarrow (a^2+b^2+c^2)-(3\lambda-2)\cdot (ab+bc+ca)>0$

So $\displaystyle (a^2+b^2+c^2)>(3\lambda-2)(ab+bc+ca)>0$

So $\displaystyle 3\lambda-2 < \frac{a^2+b^2+c^2}{ab+bc+ca}\Rightarrow 3\lambda < \frac{(a+b+c)^2}{ab+bc+ca}$

Now How can I solve after that, Help me

Thanks
 
Mathematics news on Phys.org
You have done most of the work by getting to the inequality $$3\lambda-2 < \frac{a^2+b^2+c^2}{ab+bc+ca}$$. What remains is to make use of the scalene conditions $a+b>c$, $b+c>a$ and $c+a>b$. I suggest you multiply the first one by $c$, the second one by $a$, and the third one by $b$. Then add them. That should give you an estimate for the fraction $ \frac{a^2+b^2+c^2}{ab+bc+ca}.$
 
Thanks opalg Got it.

Using yours hint::

$\displaystyle (a+b)>c\Rightarrow \left(ac+bc\right)>c^2$

$\displaystyle (b+c)>a\Rightarrow \left(ab+ac\right)>a^2$

$\displaystyle (c+a)>b\Rightarrow \left(bc+ab\right)>b^2$

Now add All These equation, we got

$\displaystyle \Rightarrow 2(ab+bc+ca) > (a^2+b^2+c^2)\Rightarrow \frac{a^2+b^2+c^2}{ab+bc+ca} < 2$

So $\displaystyle 3\lambda - 2 < 2\Rightarrow \lambda < \frac{4}{3}$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
19
Views
3K
Replies
9
Views
2K
Replies
4
Views
1K
Replies
11
Views
2K
Replies
4
Views
11K
Replies
10
Views
2K
Replies
5
Views
2K
Replies
6
Views
2K
Back
Top