Value of Sigma such that the integral converges

  • Context: MHB 
  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Integral Sigma Value
Click For Summary

Discussion Overview

The discussion revolves around determining the value of sigma that ensures the convergence of the integral \[ \int_0^{\infty}e^{-5t}e^{-(\sigma + i\omega)t}dt. \] Participants explore the conditions under which this integral converges, considering both theoretical and mathematical reasoning.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants suggest that the integral converges as long as \(\omega \neq 0\) and \(\sigma \neq -5\).
  • Others propose that setting \(s = \sigma + i\omega\) leads to the conclusion that the integral converges for \(\text{Re}\ s > -5\).
  • One participant questions what happens when \(\text{Re} \ s < -5\), indicating that convergence requires \(x < 0\) in integrals of the form \(\int_0^\infty e^{(x+iy)t} dt\).
  • Another participant argues that for the modulus of the integral, \(\lvert e^{-(5+\sigma + i\omega)t}\rvert = e^{(5 + \sigma)t}\), a negative exponential is achieved if \(\sigma < -5\).
  • Some participants clarify that taking the modulus does not lose the negative sign, emphasizing that \(|e^{-(5+\sigma + i\omega)t}| = e^{-(5+\sigma)t}\).
  • There is a contention regarding the treatment of negative exponents and the implications of squaring and taking square roots in the context of the modulus.

Areas of Agreement / Disagreement

Participants express differing views on the conditions for convergence, particularly regarding the implications of \(\sigma < -5\) and the treatment of negative signs in exponentials. The discussion remains unresolved with multiple competing perspectives.

Contextual Notes

Participants highlight the importance of the real part of \(s\) and the conditions under which the integral converges, but there are unresolved mathematical steps and assumptions regarding the behavior of the exponential function.

Dustinsfl
Messages
2,217
Reaction score
5
What value of sigma guarantees the integral converges?
\[
\int_0^{\infty}e^{-5t}e^{-(\sigma + i\omega)t}dt = \frac{1}{5 + \sigma + i\omega}
\]
I don't see a problem as long as \(\omega\neq 0\) and \(\sigma\neq -5\), but by the way the question is worded, it sounds like it is after something else since it doesn't mention the value of \(\omega\).
 
Physics news on Phys.org
dwsmith said:
What value of sigma guarantees the integral converges?
\[
\int_0^{\infty}e^{-5t}e^{-(\sigma + i\omega)t}dt = \frac{1}{5 + \sigma + i\omega}
\]
I don't see a problem as long as \(\omega\neq 0\) and \(\sigma\neq -5\), but by the way the question is worded, it sounds like it is after something else since it doesn't mention the value of \(\omega\).

Setting $s = \sigma + i\ \omega$ the integral becomes...

$\displaystyle \int_{0}^{\infty} e^{- 5\ t}\ e^{- s\ t}\ d t = \mathcal{L} \{e^{- 5\ t}\} = \frac{1}{s + 5}\ (1)$

... and the (1) converges for $\displaystyle \text{Re}\ s > - 5$...

Kind regards$\chi$ $\sigma$
 
chisigma said:
Setting $s = \sigma + i\ \omega$ the integral becomes...

$\displaystyle \int_{0}^{\infty} e^{- 5\ t}\ e^{- s\ t}\ d t = \mathcal{L} \{e^{- 5\ t}\} = \frac{1}{s + 5}\ (1)$

... and the (1) converges for $\displaystyle \text{Re}\ s > - 5$...

Kind regards$\chi$ $\sigma$

What is wrong with \(\text{Re} \ s <-5\)?
 
dwsmith said:
What is wrong with \(\text{Re} \ s <-5\)?

An integral up to infinity of the form $\int_0^\infty e^{(x+iy)t} dt$ can only converge if $x<0$.
That is because the magnitude:
$$|e^{(x+iy)t}|=|e^{xt} e^{iyt}| = e^{xt}$$
will be of the form $e^{-t}$ if x is negative and $e^t$ if x is positive.
Only the first form will converge when integrated to infinity.
 
I like Serena said:
An integral up to infinity of the form $\int_0^\infty e^{(x+iy)t} dt$ can only converge if $x<0$.
That is because the magnitude:
$$|e^{(x+iy)t}|=|e^{xt} e^{iyt}| = e^{xt}$$
will be of the form $e^{-t}$ if x is negative and $e^t$ if x is positive.
Only the first form will converge when integrated to infinity.

The modulus of my problem is then
\[
\lvert e^{-(5+\sigma + i\omega)t}\rvert = e^{(5 + \sigma)t}
\]
since we lose the negative sign. Therefore, to have a negative exponential, wouldn't we need \(\sigma < - 5\)?
 
dwsmith said:
The modulus of my problem is then
\[
\lvert e^{-(5+\sigma + i\omega)t}\rvert = e^{(5 + \sigma)t}
\]
since we lose the negative sign. Therefore, to have a negative exponential, wouldn't we need \(\sigma < - 5\)?

We would not lose the negative sign.
$$|e^{-(5+\sigma + i\omega)t}| = |e^{-(5+\sigma)t} e^{i\omega t}| = |e^{-(5+\sigma)t} | \cdot |e^{i\omega t}| = |e^{-(5+\sigma)t}|$$
Since $e^{-(5+\sigma)t}$ is always a positive number, this is equal to:
$$e^{-(5+\sigma)t}$$
 
I like Serena said:
We would not lose the negative sign.
$$|e^{-(5+\sigma + i\omega)t}| = |e^{-(5+\sigma)t} e^{i\omega t}| = |e^{-(5+\sigma)t} | \cdot |e^{i\omega t}| = |e^{-(5+\sigma)}|$$
Since $e^{-(5+\sigma)t}$ is always a positive number, this is equal to:
$$e^{-(5+\sigma)t}$$

To take the modulus, we have \(\sqrt{(e^{-5t})^2} = e^{5t}\). We always lose the negative when doing this. Granted exponential is always greater than 0 but how does that preserve a negative which squared?
 
dwsmith said:
To take the modulus, we have \(\sqrt{(e^{-5t})^2} = e^{5t}\). We always lose the negative when doing this. Granted exponential is always greater than 0 but how does that preserve a negative which squared?

This is not true.
The square root cancels the square. The power $-5t$ remains intact.

Let's try it with t=1/5.
Then the argument is $e^{-1} \approx 0.368$.
If we square this number and then take the square root of the result, we will get the same number.
In particular we will not get the number $e^{1} \approx 2.71$
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 29 ·
Replies
29
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
6K