High School Value of t for Probability Generating Function

Click For Summary
The discussion focuses on the implications of the probability generating function (PGF) when t equals 2, indicating that G_X(2) represents the expectation value of 2x. It clarifies that for uniform distributions, G_X(1) is not universally defined as 1, but rather G(1−) approaches 1, reflecting the requirement that probabilities sum to one. The participants note that the significance of G_X(2) can vary depending on the specific context in which it is applied. Overall, the conversation emphasizes the nuanced understanding of PGFs in probability theory. The importance of context in interpreting these values is highlighted throughout the discussion.
songoku
Messages
2,508
Reaction score
402
TL;DR
Let PGF be

$$G_X (t) = E(t^x) = \Sigma P(X=x_i) t^{x_i}$$

and ##G_X (1) = 1##
My questions:

1) What about if t = 2? Is there a certain meaning to ##G_X (2)## ?

2) PGF for uniform distribution is ##G_X (t)=\frac{t(1-t^n)}{n(1-t)}## and for t = 1 ##G_X (1)## is undefined so ##G_X (1) =1## is not true for all cases?

Thanks
 
Physics news on Phys.org
GX(1) = 1 is not strictly correct. The condition is (to quote Wikipedia)
" G(1−) = 1, where G(1−) = limz→1G(z) from below, since the probabilities must sum to one. "
 
mjc123 said:
GX(1) = 1 is not strictly correct. The condition is (to quote Wikipedia)
" G(1−) = 1, where G(1−) = limz→1G(z) from below, since the probabilities must sum to one. "

What about ##G_X (2)## ? Is there a certain meaning to it?

Thanks
 
It is the expectation value of 2x. Whether that is particularly meaningful is another question.
 
mjc123 said:
It is the expectation value of 2x. Whether that is particularly meaningful is another question.
So whether it is meaningful or not depend on the context being considered so it will be more like case-by-case basis?

Thanks
 
The standard _A " operator" maps a Null Hypothesis Ho into a decision set { Do not reject:=1 and reject :=0}. In this sense ( HA)_A , makes no sense. Since H0, HA aren't exhaustive, can we find an alternative operator, _A' , so that ( H_A)_A' makes sense? Isn't Pearson Neyman related to this? Hope I'm making sense. Edit: I was motivated by a superficial similarity of the idea with double transposition of matrices M, with ## (M^{T})^{T}=M##, and just wanted to see if it made sense to talk...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
8
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K