Variation of matter action under diffeomorphism (Carroll)

Click For Summary

Discussion Overview

The discussion revolves around the derivation of matter action under diffeomorphism as presented in Carroll's notes, specifically focusing on the mathematical manipulations and assumptions involved in the derivation. Participants are examining the implications of symmetry in tensor indices, integration by parts, and the nature of variations in the context of general relativity.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant questions the necessity of dropping symmetrization in the derivation, suggesting that the double contraction should suffice regardless of metric symmetry.
  • Another participant confirms the logic behind the manipulation of indices and integration by parts, noting that the divergence of the determinant of the metric vanishes.
  • There is a query about whether the variation of the matter action is contravariant in both indices, with a suggestion that the relationship between variations of the metric tensor may not be straightforward.
  • Concerns are raised about the interpretation of the variation of the matter action, questioning whether it represents a fraction or a single symbol that is zeroed under certain conditions.
  • A later reply discusses the implications of boundary conditions on the integral expressions involved in the derivation.

Areas of Agreement / Disagreement

Participants express differing views on the necessity of certain assumptions and manipulations in the derivation, indicating that multiple competing interpretations and understandings remain unresolved.

Contextual Notes

Some participants highlight the complexity of variational calculus and tensor manipulations, suggesting that there may be missing foundational knowledge that affects the clarity of the discussion.

chartery
Messages
42
Reaction score
5
Queries on Carroll's derivation of matter action ## S_M ## under a diffeomorphism:

(Book B.23+4 Notes 5.35+6)

##\frac{\delta S_{M}}{\delta g_{\mu\nu}} \delta g_{\mu\nu} = \frac{\delta S_{M}} {\delta g_{\mu\nu}} \left( 2 \nabla _{(\mu}V_{\nu)} \right) =\left( 2 \right) \frac{\delta S_{M}}{\delta g_{\mu\nu}}\nabla _{\mu}V_{\nu}##

He explains dropping the symmetrisation by symmetry of the fraction, but would the double contraction not do so irrespective of metric symmetry?Also (Book B.25 Notes 5.37)

##0 = \int d^{n}x \frac{\delta S_{M}}{\delta g_{\mu\nu}}\nabla _{\mu}V_{\nu} = -\int d^{n}x \sqrt{-g} V_{\nu}\nabla _{\mu}\left( \frac{1}{\sqrt{-g}}\frac{\delta S_{M}}{\delta g_{\mu\nu}} \right)##

Could someone explain the steps to get right hand side from left (of second equality)?

Please, thanks.
 
Physics news on Phys.org
For the first, ##A^{\mu \nu} B_{(\mu \nu )} = \frac{1}{2} A^{\mu \nu} (B_{\mu \nu} + B_{\nu \mu}) = \frac{1}{2}(A^{\mu \nu} + A^{\nu \mu}) B_{\mu \nu} = A^{(\mu \nu)} B_{\mu \nu}##
And if ##A^{\mu \nu}## is symmetric then ##A^{(\mu \nu)} = A^{\mu \nu}##.

Your second equality is integration by parts (note ##\nabla \sqrt{-g} = 0##).
 
  • Like
Likes   Reactions: chartery
ergospherical said:
For the first, ##A^{\mu \nu} B_{(\mu \nu )} = \frac{1}{2} A^{\mu \nu} (B_{\mu \nu} + B_{\nu \mu}) = \frac{1}{2}(A^{\mu \nu} + A^{\nu \mu}) B_{\mu \nu} = A^{(\mu \nu)} B_{\mu \nu}##
And if ##A^{\mu \nu}## is symmetric then ##A^{(\mu \nu)} = A^{\mu \nu}##.
@ergospherical, thanks very much.

I wasn't doubting that logic, just wondering whether my application of index rules was shaky. It seemed to me that the combination of symmetry ## \nabla _{(\mu}V_{\nu)} ## with the dual contraction meant there was no need to rely on symmetry of the ##\frac{\delta S_{M}}{\delta g_{\mu\nu}}## term?
Or even, if ##A^{(\mu \nu)} = A^{\mu \nu}##, why not ## \nabla _{(\mu}V_{\nu)} = \nabla _{\mu}V_{\nu}## ?

EDIT: Oops, the last sentence highlighted my confusion (between notation and actual symmetry), so please ignore above queries and instead:

Is ##\frac{\delta S_{M}}{\delta g_{\mu\nu}}## effectively contravariant in the two indices, to conform to the summation convention? Is it as straightforward as ##\left( \delta g_{\mu\nu} \right)^{-1} = \delta g^{\mu\nu}## ?
ergospherical said:
Your second equality is integration by parts (note ##\nabla \sqrt{-g} = 0##).
For the absent antiderivative:

Is ##\frac{\delta S_{M}}{\delta g_{\mu\nu}}## a fraction with ##\delta S_{M} =0##,
or is it a single symbol, zeroed with boundary conditions,
or some other reason ? :oldsmile:
 
Last edited:
chartery said:
Is ##\frac{\delta S_{M}}{\delta g_{\mu\nu}}## effectively contravariant in the two indices, to conform to the summation convention? Is it as straightforward as ##\left( \delta g_{\mu\nu} \right)^{-1} = \delta g^{\mu\nu}## ?
Downstairs indices in the denominator count as upstairs indices, yes.

For the second sentence you have to be careful. Remember ##\delta^{\mu}_{\nu} = g^{\mu \rho} g_{\rho \nu}##, and taking the variation ##0 = g^{\mu \rho} \delta g_{\rho \nu} + \delta g^{\mu \rho} g_{\rho \nu}## and hence ##\delta g^{\mu \nu} = -g^{\mu \rho} g^{\nu \sigma} \delta g_{\rho \sigma}##.

chartery said:
For the absent antiderivative:

Is ##\frac{\delta S_{M}}{\delta g_{\mu\nu}}## a fraction with ##\delta S_{M} =0##,
or is it a single symbol, zeroed with boundary conditions,
or some other reason ? :oldsmile:
You can turn it into
\begin{align*}
\int d^4 x \sqrt{-g} \nabla_{\mu} \left(\frac{1}{\sqrt{-g}} \frac{\delta S_M}{\delta g_{\mu \nu}} V_{\nu} \right)
\end{align*}
And for any vector ##X^{\mu}## which vanishes sufficiently fast towards infinity then
\begin{align*}
\int d^4 x \sqrt{-g} \nabla_{\mu} X^{\mu} = \int d^4 x \partial_{\mu} (\sqrt{-g} X^{\mu}) = \int_{\partial} dS_{\mu} X^{\mu} \sqrt{-g} = 0
\end{align*}
by Stokes, where we used the divergence formula ##{X^{\mu}}_{;\mu} = (-g)^{-1/2} ((-g)^{1/2} X^{\mu})_{,\mu}## in the first equality.
 
Last edited:
  • Like
Likes   Reactions: chartery and PeroK
@ergospherical, again many thanks.

Self-taught, I realise I don't have enough knowledge of variational (and tensor) manipulations, but there does seem to be a lot of casually presupposed ability packed suddenly into that one bald equality in his notes !
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
926
  • · Replies 1 ·
Replies
1
Views
785
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K