- #1

chartery

- 40

- 4

##\Gamma^{\rho}_{\mu\nu}=\frac{1}{2}g^{\rho\lambda}\left( {\partial_{ \mu}}g_{\nu\lambda}+{\partial_{ \nu}}g_{\lambda\mu}-{\partial_{ \lambda}}g_{\mu\nu}\right)=\frac{1}{2}\eta^{\rho\lambda}\left( {\partial_{ \mu}}h_{\nu\lambda}+{\partial_{ \nu}}h_{\lambda\mu}-{\partial_{ \lambda}}h_{\mu\nu}\right)##

This must mean that ##{\partial_{ \mu}}h_{\nu\lambda}## is taken to be of same order as ##h^{\rho\lambda}##

I can't find a justification anywhere, so I guess everyone thinks it self-evident.

Is it certain that a weak gravitational field cannot vary quickly or 'strongly' ?