MHB Vector algebra- centroid of tetrahedron

mathisfun1
Messages
11
Reaction score
0
How to find out the position vector of the centroid of tetrahedron , the position vectors of whose vertices are a,b,c,d respectively.
I am familiar with the result, namely a+b+c+d/4 but want to know how to derive it without using the 3:1 ratio property.
Any help would be appreciated. Thank you.
 
Physics news on Phys.org
Which definition of centroid are you using? According to Wikipedia, "the centroid of a plane figure or two-dimensional shape is the arithmetic mean ("average") position of all the points in the shape", so the fact that the position vector of the centroid is $(a+b+c+d)/4$ holds by definition in that case.
 
Evgeny.Makarov said:
Which definition of centroid are you using? According to Wikipedia, "the centroid of a plane figure or two-dimensional shape is the arithmetic mean ("average") position of all the points in the shape", so the fact that the position vector of the centroid is $(a+b+c+d)/4$ holds by definition in that case.

The centroid of a tetrahedron is the intersection of all line segments that connect each vertex to the centroid of the opposite face.
 
mathisfun said:
The centroid of a tetrahedron is the intersection of all line segments that connect each vertex to the centroid of the opposite face.
Not the easiest definition to work with, but OK. I assume then that the centroid of a triangle is the intersection of its medians. I prefer to work from weighted points and prove that the center of mass, or barycenter, is the intersection of medians.

A weighted point is an ordered pair $(A,x)$ where $A$ is a point and $x$ is a real number. The barycenter of a set $\{(A_1,x_1),\dots,(A_n,x_n)\}$ of weighted points is a point $A$ such that
\[
\overrightarrow{OA}=\frac{1}{S}\left(x_1\overrightarrow{OA}_1+\dots+x_n\overrightarrow{OA}_n\right)
\]
where $S=x_1+\dots+x_n$ and $O$ is any point. One can show that the resulting point $A$ does not depend on the choice of $O$. Another property is that the barycenter of two points lies on the line passing through these points.

According to this definition, the barycenter of $\{(A,1),(B,1),(C,1)\}$ is a point $M$ such that
\[
\overrightarrow{OM}=\frac{1}{3}\left(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}\right).
\]
But the right-hand side equals
\[
\frac{1}{3}\left(\overrightarrow{OA}+2\frac{1}{2}\left(\overrightarrow{OB}+\overrightarrow{OC}\right)\right).
\]
Thus, $M$ is the barycenter of $(A,1)$ and $(A',2)$ where $A'$ is the barycenter of $(B,1)$ and $(C,1)$, i.e., the center of $BC$. Therefore, $M$ lies on the median $AA'$. Similarly, $A$ lies on the other two medians, so it is the centroid of $\triangle ABC$ according to your definition.

The barycenter of a tetrahedron $ABCD$ is a point $N$ such that
\[
\overrightarrow{ON}=\frac{1}{4}\left(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}\right).
\]
But the right-hand side equals
\[
\frac{1}{4}\left(\overrightarrow{OA}+3\frac{1}{3}\left(\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}\right)\right)
\]
Thus, $N$ is the barycenter of $(A,1)$ and $(A',3)$ where $A'$ is the barycenter and the centroid of $(B,1)$, $(C,1)$ and $(D,1)$. Therefore, $N$ lies on $AA'$. Similarly, $A$ lies on the other three segments connecting vertices to the centroids of the opposite faces, so it is the centroid of the tetrahedron $ABCD$ according to your definition.
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...

Similar threads

Replies
9
Views
3K
Replies
4
Views
2K
Replies
12
Views
3K
Replies
9
Views
3K
Replies
3
Views
482
Replies
7
Views
2K
Back
Top