MHB Vector equation of a spherical surface

Click For Summary
The discussion revolves around deriving the vector equation of a spherical surface defined by the equation $(\mathbf{x} - \mathbf{b})\cdot\mathbf{x} = 0$. It establishes that this equation represents a sphere centered at $\mathbf{x} = \frac{1}{2}\mathbf{b}$ with a radius of $\frac{1}{2}b$. Participants clarify that the goal is to prove the distance from point $\mathbf{x}$ to the center $\frac{1}{2}\mathbf{b}$ equals the radius, leading to the expression $(\mathbf{x} - \frac{1}{2}\mathbf{b})^2 = (\frac{1}{2}b)^2$. The conversation emphasizes the importance of understanding the relationship between the vectors involved rather than equating them directly. The thread concludes with a focus on the mathematical proof required to validate the spherical surface equation.
Dustinsfl
Messages
2,217
Reaction score
5
Let the position vector of an arbitrary point $P(x_1x_2x_3)$ be $\mathbf{x} =x_i\hat{\mathbf{e}}_i$, and let $\mathbf{b} = b_i\hat{\mathbf{e}}_i$ be a constant vector.
Show that $(\mathbf{x} - \mathbf{b})\cdot\mathbf{x} = 0$ is the vector equation of a spherical surface having its center at $\mathbf{x} = \frac{1}{2}\mathbf{b}$ with radius of $\frac{1}{2}b$.
\begin{alignat}{3}
(x_i\hat{\mathbf{e}}_i - b_i\hat{\mathbf{e}}_i)\cdot x_i\hat{\mathbf{e}}_i & = & x_i^2-b_ix_i
\end{alignat}
How am I supposed to obtain that $b_i = x_i$?
 
Mathematics news on Phys.org
dwsmith said:
Let the position vector of an arbitrary point $P(x_1x_2x_3)$ be $\mathbf{x} =x_i\hat{\mathbf{e}}_i$, and let $\mathbf{b} = b_i\hat{\mathbf{e}}_i$ be a constant vector.
Show that $(\mathbf{x} - \mathbf{b})\cdot\mathbf{x} = 0$ is the vector equation of a spherical surface having its center at $\mathbf{x} = \frac{1}{2}\mathbf{b}$ with radius of $\frac{1}{2}b$.
\begin{alignat}{3}
(x_i\hat{\mathbf{e}}_i - b_i\hat{\mathbf{e}}_i)\cdot x_i\hat{\mathbf{e}}_i & = & x_i^2-b_ix_i
\end{alignat}
How am I supposed to obtain that $b_i = x_i$?

You're not. That would mean $\mathbf b = \mathbf x$, but that is not what you need to prove.

You need to find the distance of $\mathbf x$ to $\frac 12 \mathbf b$ and proof that it is $\frac 12 b$.
That is, can you prove:
$(\mathbf x - \frac 12 \mathbf b)^2 \overset{?}{=} (\frac 12 b)^2$​
 
Last edited:
ILikeSerena said:
You're not. That would mean $\mathbf b = \mathbf x$, but that is not what you need to prove.

You need to find the distance of $\mathbf x$ to $\frac 12 \mathbf b$ and proof that it is $\frac 12 b$.
That is, can you prove:
$(\mathbf x - \frac 12 \mathbf b)^2 \overset{?}{=} (\frac 12 b)^2$​
$(\mathbf{x} -\frac{1}{2}\mathbf{b})^2 = \mathbf{x}\cdot\mathbf{x} - \mathbf{x}\cdot\mathbf{b} + \frac{1}{4}\mathbf{b}\cdot\mathbf{b}$
How do I go from here?
 
dwsmith said:
$(\mathbf{x} -\frac{1}{2}\mathbf{b})^2 = \mathbf{x}\cdot\mathbf{x} - \mathbf{x}\cdot\mathbf{b} + \frac{1}{4}\mathbf{b}\cdot\mathbf{b}$
How do I go from here?

What do you get from $(\mathbf{x} - \mathbf{b})\cdot\mathbf{x} = 0$?
 
Good morning I have been refreshing my memory about Leibniz differentiation of integrals and found some useful videos from digital-university.org on YouTube. Although the audio quality is poor and the speaker proceeds a bit slowly, the explanations and processes are clear. However, it seems that one video in the Leibniz rule series is missing. While the videos are still present on YouTube, the referring website no longer exists but is preserved on the internet archive...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
972
Replies
6
Views
5K
  • · Replies 2 ·
Replies
2
Views
904
  • · Replies 5 ·
Replies
5
Views
746
  • · Replies 3 ·
Replies
3
Views
5K