MHB Vector equation of a spherical surface

AI Thread Summary
The discussion revolves around deriving the vector equation of a spherical surface defined by the equation $(\mathbf{x} - \mathbf{b})\cdot\mathbf{x} = 0$. It establishes that this equation represents a sphere centered at $\mathbf{x} = \frac{1}{2}\mathbf{b}$ with a radius of $\frac{1}{2}b$. Participants clarify that the goal is to prove the distance from point $\mathbf{x}$ to the center $\frac{1}{2}\mathbf{b}$ equals the radius, leading to the expression $(\mathbf{x} - \frac{1}{2}\mathbf{b})^2 = (\frac{1}{2}b)^2$. The conversation emphasizes the importance of understanding the relationship between the vectors involved rather than equating them directly. The thread concludes with a focus on the mathematical proof required to validate the spherical surface equation.
Dustinsfl
Messages
2,217
Reaction score
5
Let the position vector of an arbitrary point $P(x_1x_2x_3)$ be $\mathbf{x} =x_i\hat{\mathbf{e}}_i$, and let $\mathbf{b} = b_i\hat{\mathbf{e}}_i$ be a constant vector.
Show that $(\mathbf{x} - \mathbf{b})\cdot\mathbf{x} = 0$ is the vector equation of a spherical surface having its center at $\mathbf{x} = \frac{1}{2}\mathbf{b}$ with radius of $\frac{1}{2}b$.
\begin{alignat}{3}
(x_i\hat{\mathbf{e}}_i - b_i\hat{\mathbf{e}}_i)\cdot x_i\hat{\mathbf{e}}_i & = & x_i^2-b_ix_i
\end{alignat}
How am I supposed to obtain that $b_i = x_i$?
 
Mathematics news on Phys.org
dwsmith said:
Let the position vector of an arbitrary point $P(x_1x_2x_3)$ be $\mathbf{x} =x_i\hat{\mathbf{e}}_i$, and let $\mathbf{b} = b_i\hat{\mathbf{e}}_i$ be a constant vector.
Show that $(\mathbf{x} - \mathbf{b})\cdot\mathbf{x} = 0$ is the vector equation of a spherical surface having its center at $\mathbf{x} = \frac{1}{2}\mathbf{b}$ with radius of $\frac{1}{2}b$.
\begin{alignat}{3}
(x_i\hat{\mathbf{e}}_i - b_i\hat{\mathbf{e}}_i)\cdot x_i\hat{\mathbf{e}}_i & = & x_i^2-b_ix_i
\end{alignat}
How am I supposed to obtain that $b_i = x_i$?

You're not. That would mean $\mathbf b = \mathbf x$, but that is not what you need to prove.

You need to find the distance of $\mathbf x$ to $\frac 12 \mathbf b$ and proof that it is $\frac 12 b$.
That is, can you prove:
$(\mathbf x - \frac 12 \mathbf b)^2 \overset{?}{=} (\frac 12 b)^2$​
 
Last edited:
ILikeSerena said:
You're not. That would mean $\mathbf b = \mathbf x$, but that is not what you need to prove.

You need to find the distance of $\mathbf x$ to $\frac 12 \mathbf b$ and proof that it is $\frac 12 b$.
That is, can you prove:
$(\mathbf x - \frac 12 \mathbf b)^2 \overset{?}{=} (\frac 12 b)^2$​
$(\mathbf{x} -\frac{1}{2}\mathbf{b})^2 = \mathbf{x}\cdot\mathbf{x} - \mathbf{x}\cdot\mathbf{b} + \frac{1}{4}\mathbf{b}\cdot\mathbf{b}$
How do I go from here?
 
dwsmith said:
$(\mathbf{x} -\frac{1}{2}\mathbf{b})^2 = \mathbf{x}\cdot\mathbf{x} - \mathbf{x}\cdot\mathbf{b} + \frac{1}{4}\mathbf{b}\cdot\mathbf{b}$
How do I go from here?

What do you get from $(\mathbf{x} - \mathbf{b})\cdot\mathbf{x} = 0$?
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top