MHB Vector Space - Proving Associativity

Click For Summary
The discussion focuses on proving the associativity of addition in the vector space defined by n-tuples of vectors. The confusion arises when justifying the use of the associative property of addition within the proof, as it seems to rely on the very property being proved. It is clarified that since the components of the tuples are elements of the vector space V, the associative property can be applied directly. The conversation also touches on the necessity of verifying all vector space properties if V is not initially defined as a vector space. Ultimately, the participants agree that proving associativity is straightforward when the properties of V are established.
Dethrone
Messages
716
Reaction score
0
Let $V$ be a vector space, and define $V^n$ to be the set of all n-tuples $(v_1, v_2,...,v_n)$ of n vectors $v_i$, each belonging to $V$. Define addition and scalar multiplcation in $V^n$ as follows:
$(u_1,u_2,...,u_n)+(v_1,v_2,...,v_n)=(u_1+v_1, u_2+v_2,...,u_n+v_n)$
$a(v_1,v_2,...,v_n)=(av_1,av_2,...,av_n)$, $a \in \Bbb{R}$

Proving this is quite trivial, but I'm quite confused about something. In proving that it is associative, then $(u+v)+w=u+(v+w)$. Let $u=(u_1,u_2,...,u_n), v=(v_1,v_2,...,v_n), w=(w_1,w_2,...,w_n)$, where $u, v,w \in V$. $\left[\left((u_1,u_2,...,u_n)+(v_1,v_2,...,v_n)\right)+(w_1,w_2,...,w_n)\right]$
$=[(u_1+v_1, u_2+v_2,...,u_n+v_n)+(w_1,w_2,...,w_n)]$
$=[(u_1+v_1)+w_1, (u_2+v_2)+w_2,...,(u_n+v_n)+w_n]$
$=[u_1+(v_1+w_1), u_2+(v_2+w_2),...,u_n+(v_n+w_n)]$

Now, at this step, my TA justifies this step of switching the brackets by saying since $u_1$, $v_1$, and $w_1$ are in the vector space, then by the associative axiom $(u_1+v_1)+w_1=u_1+(v_1+w_1)$. I'm not sure if I agree with that...aren't we trying to prove that it satisfies the associative axiom, so why are we using that in our proof? This is what I think it should be: since the components of the tuples are real numbers, then they are equivalent because the addition of real numbers is associative. Am I right?
 
Physics news on Phys.org
Rido12 said:
Let $V$ be a vector space, and define $V^n$ to be the set of all n-tuples $(v_1, v_2,...,v_n)$ of n vectors $v_i$, each belonging to $V$. Define addition and scalar multiplcation in $V^n$ as follows:
$(u_1,u_2,...,u_n)+(v_1,v_2,...,v_n)=(u_1+v_1, u_2+v_2,...,u_n+v_n)$
$a(v_1,v_2,...,v_n)=(av_1,av_2,...,av_n)$, $a \in \Bbb{R}$

Proving this is quite trivial, but I'm quite confused about something. In proving that it is associative, then $(u+v)+w=u+(v+w)$. Let $u=(u_1,u_2,...,u_n), v=(v_1,v_2,...,v_n), w=(w_1,w_2,...,w_n)$, where $u, v,w \in V$. $\left[\left((u_1,u_2,...,u_n)+(v_1,v_2,...,v_n)\right)+(w_1,w_2,...,w_n)\right]$
$=[(u_1+v_1, u_2+v_2,...,u_n+v_n)+(w_1,w_2,...,w_n)]$
$=[(u_1+v_1)+w_1, (u_2+v_2)+w_2,...,(u_n+v_n)+w_n]$
$=[u_1+(v_1+w_1), u_2+(v_2+w_2),...,u_n+(v_n+w_n)]$

Now, at this step, my TA justifies this step of switching the brackets by saying since $u_1$, $v_1$, and $w_1$ are in the vector space, then by the associative axiom $(u_1+v_1)+w_1=u_1+(v_1+w_1)$. I'm not sure if I agree with that...aren't we trying to prove that it satisfies the associative axiom, so why are we using that in our proof? This is what I think it should be: since the components of the tuples are real numbers, then they are equivalent because the addition of real numbers is associative. Am I right?
The components of the tuples are not real numbers, but elements of the space $V$. You are told that $V$ is a vector space, so you can assume that addition in $V$ is associative. If you replace "real numbers" by "elements of $V$", then your reasoning is correct. Addition in $V$ is associative, and it follows that addition in $V^n$ is associative.
 
I get it! But what if we weren't told that $V$ was a vector space? For example: The set $V$ of all ordered pairs $(x,y)$ with the addition and scalar multiplication of $\Bbb{R^2}$. Prove whether or not it is a vector space.
$(u+v)+w=((x_1,x_2)+(y_1,y_2))+(z_1,z_2)=((x_1+y_1)+z_1,(x_2+y_2)+z_1)$
Now that we don't know that $V$ is a vector space, then can I say that since $x_1,y_1,z_1$ are all real numbers (assuming that the vector field is of real numbers), and we know that the addition of real numbers are associative, then $(x_1+y_1)+z_1=x_1+(y_1+x_1)$?
 
Rido12 said:
I get it! But what if we weren't told that $V$ was a vector space? For example: The set $V$ of all ordered pairs $(x,y)$ with the addition and scalar multiplication of $\Bbb{R^2}$. Prove whether or not it is a vector space.
$(u+v)+w=((x_1,x_2)+(y_1,y_2))+(z_1,z_2)=((x_1+y_1)+z_1,(x_2+y_2)+z_1)$
Now that we don't know that $V$ is a vector space, then can I say that since $x_1,y_1,z_1$ are all real numbers (assuming that the vector field is of real numbers), and we know that the addition of real numbers are associative, then $(x_1+y_1)+z_1=x_1+(y_1+x_1)$?

Hey Rido!

Yep. That is correct. ;)

So from this you can deduce that addition of the elements in V is associative.

To prove V is a vector space, you have to go through the whole lot though (see Definition of a Vector Space). (Nerd)
 
Thanks for the help, Opalg and ILS! :D

I like Serena said:
To prove V is a vector space, you have to go through the whole lot though (see Definition of a Vector Space). (Nerd)

Yes...(Crying), the simple ones like these are quite tedious, but at least I find the more difficult ones fun to prove :D
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K