What Vector Spans the Line Defined by These Two Equations?

  • Context: MHB 
  • Thread starter Thread starter TheFallen018
  • Start date Start date
  • Tags Tags
    Vector
Click For Summary
SUMMARY

The discussion focuses on finding a vector that spans the line defined by the equations $x+6y+3z=0$ and $x+3y+4z=0$. The solution involves eliminating the variable x by subtracting the second equation from the first, leading to the relationship z=3y. This results in the vector representation =<-15y, y, 3y>, confirming that the vector <-15, 1, 3> spans the line. The method emphasizes setting y to a non-zero value to simplify calculations.

PREREQUISITES
  • Understanding of linear equations and systems
  • Familiarity with vector representation in three-dimensional space
  • Knowledge of elimination methods in algebra
  • Basic grasp of parameterization of lines in vector form
NEXT STEPS
  • Study the method of elimination in solving systems of equations
  • Learn about vector parameterization techniques
  • Explore the concept of spanning sets in linear algebra
  • Investigate the geometric interpretation of vector equations
USEFUL FOR

Students in mathematics, particularly those studying linear algebra, educators teaching systems of equations, and anyone interested in vector analysis and geometric interpretations in three-dimensional space.

TheFallen018
Messages
52
Reaction score
0
Hey,

I've got this problem that I'm trying to work out. I've tried a couple of things, but they don't really get me anywhere.

Here's the problem

Find a vector that spans the line defined by these two equations.
$x+6y+3z=0$
$x+3y+4z=0$

What would be the best way to go about this? Thanks :)
 
Physics news on Phys.org
Hi fallen angel,

There are many, many ways to approach this.

The easiest I can think of is the following.
Let's assume that the vector we are searching for has a non-zero y-component.
Then we can set y arbitrarily to 1.
Now solve the system.

Btw, I've picked y to set to 1, since y is the coordinate with the largest coefficient (6), giving us the biggest chance that the other numbers are 'nice' numbers.
 
I like Serena said:
Hi fallen angel,

There are many, many ways to approach this.

The easiest I can think of is the following.
Let's assume that the vector we are searching for has a non-zero y-component.
Then we can set y arbitrarily to 1.
Now solve the system.

Btw, I've picked y to set to 1, since y is the coordinate with the largest coefficient (6), giving us the biggest chance that the other numbers are 'nice' numbers.
Hey, thanks. That makes sense. I ended up coming up with (-15,1,3), which worked nicely. However, I'm curious about other ways to do this. Is there a fairly systematical method that would allow you to come up with a vector that would contain all values? Something that would look like (-15,1,3)+t(x,y,z).

Thanks
 
TheFallen018 said:
Hey,

I've got this problem that I'm trying to work out. I've tried a couple of things, but they don't really get me anywhere.

Here's the problem

Find a vector that spans the line defined by these two equations.
$x+6y+3z=0$
$x+3y+4z=0$

What would be the best way to go about this? Thanks :)
The first thing I see is that the two equations start with "x". If we subtract the second equation from the first, we eliminate "x" and get 3y- z= 0. So z= 3y. Putting 3y in for z the two equations become x+ 6y+ 9y= x+ 15y= 0 and x+ 3y+ 12y= x+ 15y= 0. In either case, x= -15y. So <x, y, z>= <-15y, y, 3y>= y<-15, 1, 3>. <-15, 1, 3>, or any multiple of it, spans that line.
 

Similar threads

  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K