Velocity for uniform circular motion

Click For Summary
SUMMARY

The discussion focuses on the relationship between velocity in uniform circular motion, specifically distinguishing between vector representation and arc length. Participants clarify that the instantaneous velocity, represented as the limit of arc length over time, is mathematically equivalent to the magnitude of the velocity vector. The equations governing uniform circular motion, including the position vector and its derivatives, are discussed, leading to the conclusion that the magnitude of the velocity vector is constant and equal to the product of the radius and angular velocity.

PREREQUISITES
  • Understanding of uniform circular motion and its mathematical representation
  • Familiarity with calculus concepts such as limits and derivatives
  • Knowledge of vector notation and operations in physics
  • Basic understanding of angular velocity and its relation to linear velocity
NEXT STEPS
  • Study the derivation of the Frenet-Serret formulas in differential geometry
  • Learn about the relationship between angular velocity and linear velocity in circular motion
  • Explore the concept of curvature and torsion in curves
  • Investigate the differences between instantaneous and average velocity in various motion scenarios
USEFUL FOR

Physics students, educators, and anyone interested in the mathematical foundations of motion, particularly in circular dynamics and vector calculus.

Chenkel
Messages
482
Reaction score
109
Hello everyone, I've been studying centripetal and centrifugal acceleration and derivation of their magnitude. I noticed in one of Walter Lewin's lectures that the velocity is written as both a vector and an arc length which is confusing to me. When velocity is written as a vector, it has a length that is contained in a line tangent to the circle, where velocity is written as arc length it is the length of the arc traced out by the position vector divided by time. I am wondering if these to scalar quantities are the same, and if so how to prove it.

Looking forward to your feedback, thank you!
 
Physics news on Phys.org
Chenkel said:
Hello everyone, I've been studying centripetal and centrifugal acceleration and derivation of their magnitude. I noticed in one of Walter Lewin's lectures that the velocity is written as both a vector and an arc length which is confusing to me. When velocity is written as a vector, it has a length that is contained in a line tangent to the circle, where velocity is written as arc length it is the length of the arc traced out by the position vector divided by time. I am wondering if these to scalar quantities are the same, and if so how to prove it.

Looking forward to your feedback, thank you!
Are you confusing instantaneous velocity with average velocity (over a finite time interval)?
 
PeroK said:
Are you confusing instantaneous velocity with average velocity (over a finite time interval)?
If we designate the arc length (ds) traveled during a small amount of time (dt), then we have the displacement over time (ds/dt), which is the velocity in arc length per unit time. I'm wondering if (ds/dt) is equal to the magnitude of the velocity vector when dt is small.
 
Chenkel said:
If we designate the arc length (ds) traveled during a small amount of time (dt), then we have the displacement over time (ds/dt), which is the velocity in arc length per unit time. I'm wondering if (ds/dt) is equal to the magnitude of the velocity vector when dt is small.
It's not when ##dt## is small, it's the limit as ##dt## tends to zero. Those are fundamentally different things mathematically.

Technically, you ought to use ##\Delta s## and ##\Delta t## when you mean finite intervals (small or otherwise). And use ##dt## and ##ds## when you mean differentials or the derivative ##\dfrac {ds}{dt}## (which is the instantaneous velocity).
 
  • Like
Likes   Reactions: Chenkel
I'm wondering if ##\lim_{\Delta t \rightarrow 0} {|\vec V|} = \frac {ds} {dt} ## where ##\vec V## is the linear velocity of the point and ds/dt is the arc length per second where ds is the arc length traced out by the point
 
Last edited:
Chenkel said:
I'm wondering if ##\lim_{\Delta t \rightarrow 0} {|\vec V|} = \frac {ds} {dt} ##
This doesn't make mathematical sense. What is ##\vec V## as a function of ##\Delta t##?
Chenkel said:
where ##\vec V## is the linear velocity of the point and ds/dt is the arc length traced out by the point per second
For uniform circular motion we have:
$$\vec r = R\cos(\omega t) \hat x + R \sin(\omega t) \hat y$$ and everything can be calculated from that:
$$\vec v = \frac{d\vec r}{dt} = -R\omega \sin(\omega t) \hat x + R \omega \cos(\omega t) \hat y$$$$|\vec v| = R\omega$$$$\Delta s = R \Delta \theta = R\omega \Delta t$$And, we can see that:
$$|\vec v| = \frac{ds}{dt} = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t}$$Note that this should hold for non-uniform motion in physical systems, although a mathematically pathological counterexample could be constructed (I think there was a thread about this recently).
 
Last edited:
  • Like
Likes   Reactions: vanhees71 and Chenkel
PeroK said:
This doesn't make mathematical sense. What is ##\vec V## as a function of ##\Delta t##?

For uniform circular motion we have:
$$\vec r = R\cos(\omega t) \hat x + R \sin(\omega t) \hat y$$ and everything can be calculated from that:
$$\vec v = \frac{d\vec x}{dt} = -R\omega \sin(\omega t) \hat x + R \omega \cos(\omega t) \hat y$$$$|\vec v| = R\omega$$$$\Delta s = R \Delta \theta = R\omega \Delta t$$And, we can see that:
$$|\vec v| = \frac{ds}{dt} = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t}$$Note that this should hold for non-uniform motion in physical systems, although a mathematically pathological counterexample could be constructed (I think there was a thread about this recently).
I see! It's as if the linear velocity is a string we can wrap around any curve representing the path of the object. Hopefully I am seeing things clearly.

Thanks for the reply!
 
This is related to the definition of vectors related to a given trajectory ##\vec{x}(t)## in usual 3D Euclidean space. It defines specific (usually non-inertial) reference frame for an observer moving along this given curve.

You start with the normalized tangent vector,
$$\vec{T}=\frac{\dot{\vec{x}}}{|\dot{\vec{x}}|}.$$
For the following it is more convenient to introduce the arc-length parameter,
$$s=\int_{t_0}^t \mathrm{d} t' |\dot{\vec{x}}(t')|,$$
which is the arclength of the piece of curve given by ##t' \in [t_0,t]##.
Obviously
$$\dot{s} =|\dot{\vec{x}}|>0,$$
and thus you can parametrize the curve as well by ##s## rather than ##t##. Then the normalized tangent vector reads
$$\vec{T}=\frac{\dot{\vec{x}}}{\dot{s}}=\frac{\mathrm{d} \vec{x}}{\mathrm{d} s}.$$
Then, because of ##\vec{T}^2=1=\text{const}## you have
$$\vec{T} \cdot \mathrm{d}_s \vec{T}=0,$$
and thus you can define
$$\vec{N}=\frac{\mathrm{d}_s \vec{T}}{|\mathrm{d}_s \vec{T}|}$$
as one unit-normal vector to the curve and finally, as a third vector making a right-handed Cartesian coordinate system complete, the unit-binormal vector
$$\vec{B}=\vec{T} \times \vec{N}.$$
Further you have by definition of ##N##
$$\mathrm{d}_s \vec{T}=\kappa \vec{N},$$
where ##\kappa = |\mathrm{d}_s \vec{T}|##. Now from ##\vec{N}^2=1## you find that
$$\vec{N} \cdot \mathrm{d}_s \vec{N}=0 \; \Rightarrow \; \mathrm{d}_s \vec{N}=\alpha \vec{T} + \tau \vec{B}$$
and then
$$\mathrm{d}_s \vec{B} = (\mathrm{d}_s \vec{T}) \times \vec{N} + \vec{T} \times \mathrm{d}_s \vec{N} = \kappa \vec{N} \times \vec{N} + \vec{T} \times (\alpha \vec{T}+\tau \vec{B}) = \beta \vec{T} \times \vec{B} = \tau \vec{T} \times (\vec{T} \times \vec{N}) = \tau [ \vec{T} (\vec{T} \cdot \vec{N})-\vec{N} \vec{T}^2]=-\tau \vec{N}.$$
In matrix notation we can write
$$\mathrm{d}_s (\vec{T},\vec{N},\vec{B}) = (\vec{T},\vec{N},\vec{B}) \begin{pmatrix} 0 & \alpha & 0 \\
\kappa &0 & -\tau \\ 0 &\tau &0 \end{pmatrix}=(\vec{T},\vec{N},\vec{B}) \hat{M}. \qquad (*)$$
But now the matrix
$$\hat{O}=(\vec{T},\vec{N},\vec{B}),$$
built with the column vectors ##\vec{T}##, ##\vec{N}##, and ##\vec{B}## is an orthogonal matrix, because these three vectors form a right-handed Cartesian basis, i.e.,
$$\hat{O} \hat{O}^{\text{T}}=\hat{1}$$
and thus
$$\mathrm{d}_s (\hat{O} \hat{O}^{\text{T}})=0=(\mathrm{d}_s \hat{O}) \hat{O}^{\text{T}} + \hat{O} \mathrm{d}_s \hat{O}^{\text{T}},$$
which means that the matrix ##\mathrm{d}_s \hat{O}) \hat{O}^{\text{T}}## is antisymmetric. Now we can write (*) as
$$\mathrm{d}_s \hat{O} = \hat{O} \hat{M} \; \Rightarrow \; \hat{M}=\hat{O}^{\text{T}} \mathrm{d}_s \hat{O},$$
which implies that ##\hat{M}=-\hat{M}^{\text{T}}## and thus ##\alpha=-\kappa##, i.e., finally
$$\mathrm{d}_s \vec{T}=\kappa \vec{N}, \quad \mathrm{d}_s \vec{N} = -\kappa \vec{T} + \tau \vec{N}, \quad \mathrm{d}_s \vec{B}=-\tau \vec{N}.$$
These are the Frenet-Serret formulas, and ##\kappa## and ##\tau## are called curvature and torsion of the curve.

The geometrical meaning becomes clear from the following figure from Wikipedia:
https://commons.wikimedia.org/wiki/File:Frenet.svg#/media/File:Frenet.svg
 
Last edited:
  • Informative
  • Like
Likes   Reactions: Chenkel and Delta2
@vanhees71 do you have a typo there I believe in the definition of s you should have ##|\dot {\vec{x(t')}}|## and also that ##\dot s=|\dot {\vec x}|##.
 
  • Like
Likes   Reactions: Chenkel and vanhees71
  • #10
I guess you refer to the missing time derivative in the definition of ##s##. I've corrected it.
 
  • Love
  • Like
Likes   Reactions: Chenkel and Delta2
  • #11
PeroK said:
$$\vec v = \frac{d\vec x}{dt} = -R\omega \sin(\omega t) \hat x + R \omega \cos(\omega t) \hat y$$$$|\vec v| =
Typo? You have replaced ##r## with ##x##. That should be confusing for the OP
 
  • Like
Likes   Reactions: Chenkel
  • #12
erobz said:
Typo? You have replaced ##r## with ##x##.
Well spotted, thanks!
 
  • Like
Likes   Reactions: Chenkel and erobz

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
Replies
55
Views
3K
Replies
1
Views
808
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
11
Views
3K
  • · Replies 37 ·
2
Replies
37
Views
5K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 15 ·
Replies
15
Views
4K
  • · Replies 54 ·
2
Replies
54
Views
8K