MHB Velocity Time graphs: Find acceleration in the first 15 mins in km/h^2

hadiahabibi
Messages
1
Reaction score
0

Attachments

  • kk.png
    kk.png
    22.5 KB · Views: 127
Mathematics news on Phys.org
(a) note acceleration is uniform from 9:00 to 9:15 ...

$a = \dfrac{v(9.25) - v(9)}{.25 - 0}$

(b) since $v \ge 0$ for $9 \le t \le 11$, $\displaystyle d = \int_9^{11} v(t) \, dt$

(c) $\displaystyle |\bar{v}| = \dfrac{1}{11-9} \int_9^{11} v(t) \, dt$
 
For (b) and (c) that integral is the "area under the curve". For b, I would think of this as:
1) a triangle with base "1/4 hour" and height "50 km/hr". The area of that triangle is (1/2)(1/4)(50)= 6.25 km.
2) a rectangle with base "1/2 hour" and height "50 km/hr". The area of that rectangle is (1/2)(50)= 25 km.
3) a trapezoid with bases "50 km/hr" and "100 km/hr" and height "1/4 hour" (yes, I've swapped "height" and "base" to better fit the trapezoid). The area is (1/2)(50+ 100)(1/4)= 18.75 km.
4) a rectangle with base "1/2 hr" and height "100 km/hr". The area is (1/2)(100)= 50 km.
5) a triangle with base "1/2 hr" and height "100 km". The area is (1/2)(1/2)(100)= 25 km.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top