Verify that ## L(1, \chi)\neq 0 ##

  • Thread starter Thread starter Math100
  • Start date Start date
AI Thread Summary
The discussion focuses on verifying that L(1, χ) is non-zero for specific nonprincipal Dirichlet characters modulo 16. Calculations show that L(1, χ2), L(1, χ5), and L(1, χ6) yield non-zero results individually, confirming L(1, χ) ≠ 0. The sums for each character are computed, resulting in distinct non-zero values. It is noted that L(1, χ) belongs to the complex numbers, emphasizing the importance of calculating each character's contribution separately. The conclusion asserts that L(1, χ) is indeed non-zero for the specified characters.
Math100
Messages
813
Reaction score
229
Homework Statement
For each real-valued nonprincipal character ## \chi ## mod ## 16 ##, verify that ## L(1, \chi)\neq 0 ##.
Relevant Equations
## L(1, \chi)=\sum_{n=1}^{\infty}\frac{\chi(n)}{n} ##
Note that ## L(1, \chi)\neq 0 ## when ## \chi ## is a nonprincipal character.
From a table of values for all the nonprincipal Dirichlet characters modulo ## 16 ##, we have that
\begin{array}{|c|c|c|c|c|c|c|c|c|}
\hline n & 1 & 3 & 5 & 7 & 9 & 11 & 13 & 15 \\
\hline \chi_{1}(n) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline \chi_{2}(n) & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\
\hline \chi_{3}(n) & 1 & i & i & 1 & -1 & -i & -i & -1 \\
\hline \chi_{4}(n) & 1 & -i & i & -1 & -1 & i & -i & 1 \\
\hline \chi_{5}(n) & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\
\hline \chi_{6}(n) & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\
\hline \chi_{7}(n) & 1 & i & -i & -1 & -1 & -i & i & 1 \\
\hline \chi_{8}(n) & 1 & -i & -i & 1 & -1 & i & i & -1 \\
\hline
\end{array}

So ## L(1, \chi)=\sum_{n=1}^{\infty}\frac{\chi_{k}(n)}{n} ## with ## k\in\left \{ 2, 5, 6 \right \} ##.
Observe that
\begin{align*}
&\sum_{n=1}^{\infty}\frac{\chi_{2}(n)}{n}=\frac{\chi_{2}(1)}{1}+\frac{\chi_{2}(3)}{3}+\frac{\chi_{2}(5)}{5}+\frac{\chi_{2}(7)}{7}+\frac{\chi_{2}(9)}{9}+\frac{\chi_{2}(11)}{11}+\frac{\chi_{2}(13)}{13}+\frac{\chi_{2}(15)}{15}\\
&1+(-\frac{1}{3})+\frac{1}{5}+(-\frac{1}{7})+\frac{1}{9}+(-\frac{1}{11})+\frac{1}{13}+(-\frac{1}{15})=\frac{33976}{45045}\neq 0\\
&\sum_{n=1}^{\infty}\frac{\chi_{5}(n)}{n}=\frac{\chi_{5}(1)}{1}+\frac{\chi_{5}(3)}{3}+\frac{\chi_{5}(5)}{5}+\frac{\chi_{5}(7)}{7}+\frac{\chi_{5}(9)}{9}+\frac{\chi_{5}(11)}{11}+\frac{\chi_{5}(13)}{13}+\frac{\chi_{5}(15)}{15}\\
&1+\frac{1}{3}+(-\frac{1}{5})+(-\frac{1}{7})+\frac{1}{9}+\frac{1}{11}+(-\frac{1}{13})+(-\frac{1}{15})=\frac{47248}{45045}\neq 0\\
&\sum_{n=1}^{\infty}\frac{\chi_{6}(n)}{n}=\frac{\chi_{6}(1)}{1}+\frac{\chi_{6}(3)}{3}+\frac{\chi_{6}(5)}{5}+\frac{\chi_{6}(7)}{7}+\frac{\chi_{6}(9)}{9}+\frac{\chi_{6}(11)}{11}+\frac{\chi_{6}(13)}{13}+\frac{\chi_{6}(15)}{15}\\
&1+(-\frac{1}{3})+(-\frac{1}{5})+\frac{1}{7}+\frac{1}{9}+(-\frac{1}{11})+(-\frac{1}{13})+\frac{1}{15}=\frac{27904}{45045}\neq 0.\\
\end{align*}
Thus
\begin{align*}
&L(1, \chi)=\sum_{n=1}^{\infty}\frac{\chi_{2}(n)}{n}+\sum_{n=1}^{\infty}\frac{\chi_{5}(n)}{n}+\sum_{n=1}^{\infty}\frac{\chi_{6}(n)}{n}\\
&=\frac{33976}{45045}+\frac{47248}{45045}+\frac{27904}{45045}\\
&=\frac{36376}{15015}\\
&\neq 0.\\
\end{align*}
Therefore, ## L(1, \chi)\neq 0 ## for each real-valued nonprincipal character ## \chi ## mod ## 16 ##.
 
Physics news on Phys.org
You have ##\chi\in \{\chi_2,\chi_5,\chi_6\}.## ##L(1,\chi)## is not summed over all non-principal characters so everything from "Thus" on must be deleted. You have to calculate ##L(1,\chi_2),L(1,\chi_5),L(1,\chi_6)## which you did.

The rest is ok. Maybe it's worth mention that ##L(1,\chi)\in \mathbb{C}.##
 
fresh_42 said:
You have ##\chi\in \{\chi_2,\chi_5,\chi_6\}.## ##L(1,\chi)## is not summed over all non-principal characters so everything from "Thus" on must be deleted. You have to calculate ##L(1,\chi_2),L(1,\chi_5),L(1,\chi_6)## which you did.

The rest is ok. Maybe it's worth mention that ##L(1,\chi)\in \mathbb{C}.##
So it's asking for the summation for each of the ## \chi_{2}, \chi_{5}, \chi_{6} ## then?
 
Math100 said:
So it's asking for the summation for each of the ## \chi_{2}, \chi_{5}, \chi_{6} ## then?
No. One sum per character, makes three sums. Everything was fine until you started with "Thus".

\begin{align*}
L(1,\chi_2)&=\sum_{n=1}^\infty \dfrac{\chi_2(n)}{n}=\ldots \neq 0\\
L(1,\chi_5)&=\sum_{n=1}^\infty \dfrac{\chi_5(n)}{n}=\ldots \neq 0\\
L(1,\chi_6)&=\sum_{n=1}^\infty \dfrac{\chi_6(n)}{n}=\ldots \neq 0
\end{align*}
 
fresh_42 said:
No. One sum per character, makes three sums. Everything was fine until you started with "Thus".

\begin{align*}
L(1,\chi_2)&=\sum_{n=1}^\infty \dfrac{\chi_2(n)}{n}=\ldots \neq 0\\
L(1,\chi_5)&=\sum_{n=1}^\infty \dfrac{\chi_5(n)}{n}=\ldots \neq 0\\
L(1,\chi_6)&=\sum_{n=1}^\infty \dfrac{\chi_6(n)}{n}=\ldots \neq 0
\end{align*}
I see now.
 
I tried to combine those 2 formulas but it didn't work. I tried using another case where there are 2 red balls and 2 blue balls only so when combining the formula I got ##\frac{(4-1)!}{2!2!}=\frac{3}{2}## which does not make sense. Is there any formula to calculate cyclic permutation of identical objects or I have to do it by listing all the possibilities? Thanks
Essentially I just have this problem that I'm stuck on, on a sheet about complex numbers: Show that, for ##|r|<1,## $$1+r\cos(x)+r^2\cos(2x)+r^3\cos(3x)...=\frac{1-r\cos(x)}{1-2r\cos(x)+r^2}$$ My first thought was to express it as a geometric series, where the real part of the sum of the series would be the series you see above: $$1+re^{ix}+r^2e^{2ix}+r^3e^{3ix}...$$ The sum of this series is just: $$\frac{(re^{ix})^n-1}{re^{ix} - 1}$$ I'm having some trouble trying to figure out what to...
Back
Top