Vibration: Transmissibility ratio sign change when damping is equal to zero

AI Thread Summary
The discussion centers on the transmissibility ratio equation, specifically the conditions under which to take the positive or negative square root when damping is zero. The transmissibility ratio (T.R.) is generally considered a positive value, but the negative root is applicable when the ratio r (the natural frequency to excitation frequency) is greater than one. Participants clarify that r indicates how close the driving frequency is to the resonant frequency and does not directly relate to damping. The conversation reflects some frustration with the topic, indicating a lack of interest in the class material. Understanding the conditions for the roots is essential for accurately applying the transmissibility ratio in vibration analysis.
Pipsqueakalchemist
Messages
138
Reaction score
20
So for the transmissibility ratio equation, after doing a lot of questions when damping is zero and I have to take the square root of the denominator. Some questions take the positive root (1-r^2) while for other questions the solution takes the negative root (r^2-1). Can someone explain when we take the positive or negative root please and thank you
 

Attachments

  • 6432EE0F-4355-4F33-B274-615223E5F9D0.jpeg
    6432EE0F-4355-4F33-B274-615223E5F9D0.jpeg
    30.5 KB · Views: 184
Engineering news on Phys.org
The T.R. is a ratio of force magnitudes and is generally taken as a positive value. So the negative root is taken when r>1.
 
It looks like Pipsqueak is no longer with us... Nevertheless, r in the above equation is the ratio between natural frequency and excitation frequency (ω/ωn). It's a measure of how close the driving frequency is to the resonant frequency, and doesn't provide any explicit information on the damping.
 
onatirec said:
It looks like Pipsqueak is no longer with us... Nevertheless, r in the above equation is the ratio between natural frequency and excitation frequency (ω/ωn). It's a measure of how close the driving frequency is to the resonant frequency, and doesn't provide any explicit information on the damping.
Yea I stopped caring about that class so it’s whatever
 
Thread 'What type of toilet do I have?'
I was enrolled in an online plumbing course at Stratford University. My plumbing textbook lists four types of residential toilets: 1# upflush toilets 2# pressure assisted toilets 3# gravity-fed, rim jet toilets and 4# gravity-fed, siphon-jet toilets. I know my toilet is not an upflush toilet because my toilet is not below the sewage line, and my toilet does not have a grinder and a pump next to it to propel waste upwards. I am about 99% sure that my toilet is not a pressure assisted...
After over 25 years of engineering, designing and analyzing bolted joints, I just learned this little fact. According to ASME B1.2, Gages and Gaging for Unified Inch Screw Threads: "The no-go gage should not pass over more than three complete turns when inserted into the internal thread of the product. " 3 turns seems like way to much. I have some really critical nuts that are of standard geometry (5/8"-11 UNC 3B) and have about 4.5 threads when you account for the chamfers on either...
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
Back
Top