Vibrational frequency refers to the speed at which an object or system vibrates. It is typically measured in hertz (Hz) or cycles per second. Amplitude, on the other hand, refers to the maximum displacement of an object or system from its equilibrium position during vibration. It is often measured in meters (m) or millimeters (mm).
V0-V2 refers to different vibrational states, with V0 being the initial state and V2 being a higher vibrational state. The increase in frequency or amplitude from V0 to V2 depends on the specific system or object being studied.
In general, the vibrational frequency V0 is not necessarily equal to V1. V1 could have a slightly higher or lower frequency depending on the system's properties and external factors.
When V0 increases to V1, it could be due to an increase in frequency, amplitude, or both. This depends on the type of vibration and the energy input into the system. For example, if a guitar string is plucked harder, it will vibrate with a higher frequency and larger amplitude.
Similarly, when V0 increases to V2, it could be due to an increase in frequency, amplitude, or both. Again, this depends on the specific system and the energy input into it. For instance, if the energy input into the guitar string is increased even further, it will vibrate with a higher frequency and larger amplitude, resulting in the V2 state.
In summary, the vibrational states V0-V2 can involve increases in frequency, amplitude, or both, and the specific changes depend on the system and the energy input into it.