MHB Victoria's question at Yahoo Answers regarding a separable first order ODE

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

General solution of dy/dt=k((y)(b-y))?

B is a constant (in this case, initial temperature)
K is a constant of proportionality
I know you have to use separable variables, but i oeep
Getting stuck. Thanks for the help!

Here is a link to the question:

General solution of dy/dt=k((y)(b-y))? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Victoria,

We are given to solve:

$$\frac{dy}{dt}=ky(b-y)$$ where $k$ and $b$ are constants.

First, let's separate the variables:

$$\frac{1}{y(b-y)}\,dy=k\,dt$$

Using partial fraction decomposition on the left, and integrating, we obtain:

$$\frac{1}{b}\int\left(\frac{1}{y}-\frac{1}{y-b} \right)\,dy=k\int\,dt$$

$$\ln\left|\frac{y}{y-b} \right|=bkt+C$$

Converting from logarithmic to exponential form, we find:

$$\frac{y}{y-b}=Ce^{bkt}$$

Solving for $y$, we get:

$$y(t)=\frac{b}{1-Ce^{-bkt}}$$ where $$0<C$$.

To Victoria and any other guests viewing this topic, I invite and encourage you to post of differential equations problems in our http://www.mathhelpboards.com/f17/ forum.

Best Regards,

Mark.
 
Last edited:
For completeness sake it should be specified that it exists also the solution y=0 that can't be obtained fon any value of the constant C. In general that happens when an ODE has the form $\displaystyle \frac{d y}{d x} = f(y)$ where is $\displaystyle f(0)=0$ ... Kind regards $\chi$ $\sigma$
 
Good catch, chisigma!

I failed to mention that during the process of separation of variables, we in fact did lose the trivial solution $$y \equiv 0$$.
 
A good example of the 'traps' into which one can bump with this type of ODE is given in... http://www.mathhelpboards.com/f17/interesting-ordinary-differential-equation-3684/#post16751

... where some cases in which the initial condition $y(0)=0$ leads to multiple solutions are reported...

Kind regards

$\chi$ $\sigma$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top