Volume in the first octant bounded by the coordinate planes and x + 2y + z = 4.

Click For Summary
SUMMARY

The volume in the first octant bounded by the coordinate planes and the plane defined by the equation x + 2y + z = 4 is calculated using triple integration. The correct infinitesimal volume element is dV = dz dx dy, not 1/8 dz dz dy as initially stated. The final volume is determined to be 16/3 after proper evaluation of the integral limits: z ranges from 0 to 4 - x - 2y, x ranges from 0 to 4 - 2y, and y ranges from 0 to 2. The misunderstanding regarding the factor of 1/8 arises from a misinterpretation of the volume in the first octant.

PREREQUISITES
  • Understanding of triple integrals in calculus
  • Familiarity with the concept of octants in three-dimensional space
  • Knowledge of integration limits for bounded regions
  • Proficiency in LaTeX for mathematical notation
NEXT STEPS
  • Study the application of triple integrals in calculating volumes of bounded regions
  • Learn about the geometric interpretation of octants in three-dimensional space
  • Practice setting up and evaluating multiple integrals with varying limits
  • Explore the use of LaTeX for writing mathematical expressions clearly
USEFUL FOR

Students and professionals in mathematics, engineering, and physics who are involved in volume calculations and integration techniques in three-dimensional geometry.

agnimusayoti
Messages
239
Reaction score
23
Homework Statement
Find the volume in the first octant bounded by the coordinate planes and x + 2y + z = 4.
Relevant Equations
Multiple integrals.
First, I try to make a sketch and from that I take limit of integration from:
1. ##z_1 = 0## to ##z_2 = 4 - x -2y##
2. ##x_1 = 0## to## x_2 = 4- 2y ##
3. ##y_1 = 0## to ##y_2 = 2##

Then, I define infinitesimal volume element in the first octant as ##dV = 1/8 dz dz dy##.
Therefore,
$$V=1/8 \int_{y_1=0}^{y_2 = 2} \int_{x_1=0}^{x_2=4-2y} \int_{z_1=0}^{z_2 = 4 - x -2y} dz dy dx$$
$$V=1/8 \int_{y_1=0}^{y_2 = 2} \int_{x_1=0}^{x_2=4-2y} \int_{z_1=0}^{z_2 = 4 - x -2y} dz dy dx$$
$$V=1/8 \int_{y_1=0}^{y_2 = 2} \int_{x_1=0}^{x_2=4-2y} (4 - x -2y) dy dx$$
$$V=1/8 \int_{y_1=0}^{y_2 = 2} (8 - 8y +6y^2) dx$$
$$V=1/8 (16) = 2$$.

But, final answer should be 16/3. So, I think I made a mistake when interpreting "the volume in the first octant" as 1/8 dV. Why the denominator is 3? Does the volume in the first octant is 1/3 of total volume? Thanks.
 
Last edited by a moderator:
Physics news on Phys.org
agnimusayoti said:
when interpreting .. 1/8 dV
Your intuition is correct: infinitesimal volume element is simply ##dV = dx\,dy\,dz##. The integral bounds take care of what you tried to insert in ##dV##.

Still some work to check : 8 x 2 ##\ne## 16/3 !"Tip": make a habit of properly nesting the integrals, so $$ \int_{z_1}^{z_2} \Biggl ( \int_{y_1}^{y_2} \left ( \int_{x_1}^{x_2} ... \ dx\right ) \,dy \Biggr ) \,dz $$
 
Last edited:
agnimusayoti said:
Homework Statement:: Find the volume in the first octant bounded by the coordinate planes and x + 2y + z = 4.
Relevant Equations:: Multiple integrals.

First, I try to make a sketch and from that I take limit of integration from:
1. ##z_1 = 0## to ##z_2 = 4 - x -2y##
2. ##x_1 = 0## to## x_2 = 4- 2y ##
3. ##y_1 = 0## to ##y_2 = 2##

So you are going to integrate in the ##z## direction first, the ##x## direction second, and the ##y## direction last. Ok, that means ##dV = dzdxdy## in that order.

Then, I define infinitesimal volume element in the first octant as ##dV = 1/8 dz dz dy##.

Why the ##\frac 1 8##? That shouldn't be there. And it should be ##dV=dzdxdy## (a typo?)

Therefore,
$$V=1/8 \int_{y_1=0}^{y_2 = 2} \int_{x_1=0}^{x_2=4-2y} \int_{z_1=0}^{z_2 = 4 - x -2y} dz dy dx$$
Should be$$
V= \int_{y_1=0}^{y_2 = 2} \int_{x_1=0}^{x_2=4-2y} \int_{z_1=0}^{z_2 = 4 - x -2y} dz dx dy$$

Work it carefully from here. You will get ##\frac {16} 3##.
 
Yes, in my work, I'm integrate from dz, dx, and dy. However, maybe I need more time to get used with Latex Code (for me it's difficult) to write down my work.

Nah, ``1/8 is from details " volume in first octant". In previous chapter, volume in first octant means 1/8 from total volume. So, I think that dV in first octant is 1/8 dV which dV is element volume (total).

So, what does volume in first octant mean?
 
agnimusayoti said:
So, what does volume in first octant mean?
That the bounds of the tertraeder region are the given plane plus the three coordinate planes ##x=0, y=0, z=0##.
 
Yes, I made a mistake in last steps. So the result is 16/3. So, in this case, the total volume bounded by the region is in first octant?

Three coordinates plane ##x=0## is yz plane? And how about the second octant? Please explain it to me. Thankss
 
agnimusayoti said:
plane x=0 is yz plane
Correct.
agnimusayoti said:
And how about the second octant?
Good question. I don't know if there is a particular ordering for these eight octants. But for sure the first octant is the one with all x,y,z ##\ge## 0.
 
agnimusayoti said:
Yes, in my work, I'm integrate from dz, dx, and dy. However, maybe I need more time to get used with Latex Code (for me it's difficult) to write down my work.

Nah, ``1/8 is from details " volume in first octant". In previous chapter, volume in first octant means 1/8 from total volume. So, I think that dV in first octant is 1/8 dV which dV is element volume (total).

So, what does volume in first octant mean?
The slanted plane leans up against the coordinate planes in the first octant. It is the only octant where the plane bounds a finite volume with the coordinate planes. So the 1/8 makes no sense. There is no larger volume that this is a portion of.
 
  • Like
Likes   Reactions: SammyS

Similar threads

Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
15
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
Replies
2
Views
1K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K