MHB Volume of a Tetrahedron: General Slicing Method

AI Thread Summary
The discussion focuses on using the general slicing method to calculate the volume of a tetrahedron with edges of length 6. The approach involves orienting the coordinate axes and determining the height of the tetrahedron using geometric relationships between the apothem, slant height, and edge lengths. The volume is derived by integrating the volume of cross-sectional slices, leading to the formula V = (√2 * s^3) / 12. Substituting the edge length of 6 into the formula results in a final volume of 18√2. This method effectively demonstrates the application of calculus in geometric volume calculations.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

General slicing method to find volume of a tetrahedron?


General slicing method to find volume of a tetrahedron (pyramid with four triangular faces), all whose edges have length 6?

I have posted a link there to this thread so the OP can view my work.
 
Mathematics news on Phys.org
Hello Bringing truth.

Let's orient our coordinate axis, the $x$-axis, such that it is perpendicular to the base and passes through the apex. Let the point where this axis intersects the base be the origin of the axis. The distance from the origin to the apex along this axis is the height $h$ of the tetrahedron. To determine $h$, we may construct a right triangle whose shorter leg is the apothem $a$ of the base, the longer leg is $h$, and the hypotenuse is the slant height $\ell$ of one of the adjoining faces. Let $s$ be the edge lengths os the tetrahedron.

Let's first determine the apothem $a$. If we divide the base into 3 congruent triangles, we may equate the area of the whole triangle to the 3 smaller triangles:

$$\frac{1}{2}s^2\frac{\sqrt{3}}{2}=3\cdot\frac{1}{2}sa$$

$$s\frac{\sqrt{3}}{2}=3a$$

$$a=\frac{s}{2\sqrt{3}}$$

And the slant height is given by:

$$\ell=\frac{\sqrt{3}}{2}s$$

Hence:

$$h=\sqrt{\left(\frac{\sqrt{3}}{2}s \right)^2-\left(\frac{s}{2\sqrt{3}} \right)^2}=s\sqrt{\frac{3}{4}-\frac{1}{12}}=s\sqrt{\frac{2}{3}}$$

Now, if we take cross sections perpendicular to the $x$-axis, we may give the volume of an arbitrary slice as:

$$dV=\frac{\sqrt{3}}{4}s^2(x)\,dx$$

We know $s(x)$ will be a linear function, containing the points:

$$(0,s)$$ and $$(h,0)$$

Thus the slope of the line is:

$$m=-\frac{s}{h}$$

And thus, using the point-slope formula, we find:

$$s(x)=-\frac{s}{h}x+s=\frac{s}{h}\left(h-x \right)$$

Hence, we may state:

$$dV=\frac{\sqrt{3}s^2}{4h^2}\left(h-x \right)^2\,dx$$

Summing up the slices, we may write:

$$V=\frac{\sqrt{3}s^2}{4h^2}\int_0^h\left(h-x \right)^2\,dx$$

Using the substitution:

$$u=h-x\,\therefore\,du=-dx$$ we obtain:

$$V=-\frac{\sqrt{3}s^2}{4h^2}\int_h^0 u^2\,du=\frac{\sqrt{3}s^2}{4h^2}\int_0^h u^2\,du$$

Applying the FTOC, we have:

$$V=\frac{\sqrt{3}s^2}{12h^2}\left[u^3 \right]_0^h=\frac{\sqrt{3}hs^2}{12}$$

Using the value we found for $h$, we have:

$$V=\frac{\sqrt{3}\left(s\sqrt{\frac{2}{3}} \right)s^2}{12}=\frac{\sqrt{2}s^3}{12}$$

Now using the given data $s=6$, we obtain:

$$V=\frac{\sqrt{2}6^3}{12}=18\sqrt{2}$$
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top