MHB Volume of Solid of Revolution of f(x)

  • Thread starter Thread starter Theia
  • Start date Start date
  • Tags Tags
    Revolution Solid
Click For Summary
To find the volume of the solid formed by revolving the function f(x) = x^3 + 4x^2 - x + 5 around the line y(x) = -x + 5, the method of washers can be applied. The volume can be calculated using the integral V = π∫[a,b] (R^2 - r^2) dx, where R is the distance from the axis of rotation to the outer curve and r is the distance to the inner curve. After determining the bounds of integration and the appropriate radii, the integral can be evaluated to yield the final volume. This approach ensures an accurate calculation of the solid's volume. The discussion emphasizes the importance of understanding the geometric implications of the solid of revolution.
Theia
Messages
121
Reaction score
1
Let $$f(x) = x^3 + 4x^2 - x + 5$$ revolve about the line $$y(x) = -x + 5$$. There will form one solid with finite volume. Find the volume of that solid.
 
Mathematics news on Phys.org
My solution:

In the following tutorial:

http://mathhelpboards.com/math-notes-49/solid-revolution-about-oblique-axis-rotation-6683.html

I developed the following formula:

$$V=\frac{\pi}{\left(m^2+1 \right)^{\frac{3}{2}}}\int_{x_i}^{x_f} \left(f(x)-mx-b \right)^2\left(1+mf'(x) \right)\,dx$$

To find the limits of integration, we need to find where the given cubic function, and the axis of rotation meet:

$$x^3+4x^2-x+5=5-x$$

$$x^2(x+4)=0$$

$$x=-4,0$$

Thus, we now have:

$$V=\frac{\pi}{2^{\frac{3}{2}}}\int_{-4}^{0} \left(x^3+4x^2\right)^2\left(2-3x^2-8x\right)\,dx$$

Expanding the integrand, we have:

$$V=\frac{\pi}{2^{\frac{3}{2}}}\int_{-4}^{0} -3x^8-32x^7-110x^6-112x^5+32x^4\,dx$$

Application of the FTOC gives us:

$$V=\frac{\pi}{2^{\frac{3}{2}}}\cdot\frac{32768}{105}=\frac{2^\frac{27}{2}\pi}{105}$$
 
Yeah, that's right. Well done! ^^
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
Replies
1
Views
2K
Replies
1
Views
2K
Replies
1
Views
1K
Replies
1
Views
2K