Watch problems gaining and losing time

  • Thread starter Thread starter Natasha1
  • Start date Start date
  • Tags Tags
    Time watch
Click For Summary
SUMMARY

The discussion centers on two 12-hour watches: one gains 3 minutes every 2 hours, while the other loses 5 minutes every 2 hours. The first watch will next show the correct time at noon on January 21st, 20 days after being set correctly at noon on January 1st. The two watches will next display the same time after 7.5 days, which falls on January 9th at midnight. The calculations involve understanding the rate of gain and loss of time and how these affect the synchronization of the watches.

PREREQUISITES
  • Understanding of time calculations and conversions
  • Familiarity with functions and equations
  • Basic knowledge of how time zones and clock mechanics work
  • Ability to solve algebraic equations
NEXT STEPS
  • Learn about time functions and their applications in real-world scenarios
  • Study the concept of relative motion in timekeeping devices
  • Explore mathematical modeling of periodic functions
  • Research the effects of mechanical discrepancies in timekeeping
USEFUL FOR

Mathematicians, clockmakers, students studying timekeeping mechanics, and anyone interested in the practical applications of time calculations.

Natasha1
Messages
494
Reaction score
9
1. My watch (which is a 12 hour watch) gains 3 minutes every 2 hours.

a) I set my watch to the correct time at noon on 1st January. If I don't reset it, when will it next show the correct time?

I got 48 hours after, so that's at noon on the 3rd January. as if my watch gains 3 minutes every two hours then over 24 lots of 2 hours, it would have gained an extra 2 hours. So that is 24 lots of 2 hours = 24 x 2 = 48 hours added to the 'correct' starting time of noon. Hence, my answer of noon on the 3rd January.2. Mrs Varma's watch (also a 12 hour watch) loses 5 minutes every 2 hours. She also sets her watch to the correct time at noon on 1st January.

b) When will our two watches next show the same time?

I am completely stuck here :(... please help to explain to me how to do this...
3. When will our watches next show the same, CORRECT time?

Again, I can't do this... Any explanation would be greatly appreciated. Thank you.

Nat.
 
Physics news on Phys.org
Natasha1 said:
1. My watch (which is a 12 hour watch) gains 3 minutes every 2 hours.

a) I set my watch to the correct time at noon on 1st January. If I don't reset it, when will it next show the correct time?

I got 48 hours after, so that's at noon on the 3rd January. as if my watch gains 3 minutes every two hours then over 24 lots of 2 hours, it would have gained an extra 2 hours. So that is 24 lots of 2 hours = 24 x 2 = 48 hours added to the 'correct' starting time of noon. Hence, my answer of noon on the 3rd January.

If you watch gains 3 minutes in 2 hours, it gains 3*12=36 minutes in a day. So it can't show the correct time after only two days.
Try to write the time on your watch as a function of the correct time.
Say ##W(t)=## some function of the correct time ##t## (expressed in minutes)
Then for your clock to again show the correct time, you should have ##W(t)=t+720## (because there are 720 minutes in 12 hours, and your clock has to gain 12 hours to again show the correct time). Solve that equation for ##t##.

Use another similar function to represent the time on Mrs Varma's watch to solve 2) and 3).
 
Last edited:
Ok, I got January 4th at 8pm. Is this correct?

Cannot do 2b nor 3. Can anyone help me?
 
Natasha1 said:
Ok, I got January 4th at 8pm. Is this correct?
It would help if you showed how you got that result.
I find something different. Note that your watch only gains 36 minutes a day, so it can't catch up in 3 days and 8 hours.

The time on your watch can be expressed as ##W(t)=t+t*3/120##, where ##t## is the correct time in minutes, and ##t=0## represents noon on 1st January.
Your watch will again show the correct time when ##W(t)=t+720##.

So we look for the solution of $$t+t*3/120=t+720$$
Natasha1 said:
Cannot do 2b nor 3. Can anyone help me?
Express the time on Mrs Varma's watch by a function ##V(t)##, similar to the function ##W(t)## expressing the time on your watch.
 
Last edited:
Natasha1 said:
1. My watch (which is a 12 hour watch) gains 3 minutes every 2 hours.

a) I set my watch to the correct time at noon on 1st January. If I don't reset it, when will it next show the correct time?

I got 48 hours after, so that's at noon on the 3rd January. as if my watch gains 3 minutes every two hours then over 24 lots of 2 hours, it would have gained an extra 2 hours. So that is 24 lots of 2 hours = 24 x 2 = 48 hours added to the 'correct' starting time of noon. Hence, my answer of noon on the 3rd January.2. Mrs Varma's watch (also a 12 hour watch) loses 5 minutes every 2 hours. She also sets her watch to the correct time at noon on 1st January.

b) When will our two watches next show the same time?

I am completely stuck here :(... please help to explain to me how to do this...
3. When will our watches next show the same, CORRECT time?

Again, I can't do this... Any explanation would be greatly appreciated. Thank you.

Nat.

Why not try this to get you started and let you see what's going on. Keep two lists: one with the correct time and one with the time your watch shows. For 1a:

Correct Time / My Watch

Jan 1st noon / noon
Jan 1st 2.00 (pm) / 2.03
Jan 1st 4.00 (pm) / 4.06
Jan 1st 6.00 (pm) / 6.09

You might first ask yourself: when is your watch an hour ahead?
 
Ok,

a) I set my watch to the correct time at noon on 1st January. If I don't reset it, when will it next show the correct time?

I got 8pm (or 20.00) on 4th January. Can someone tell me if I am right?2. Mrs Varma's watch (also a 12 hour watch) loses 5 minutes every 2 hours. She also sets her watch to the correct time at noon on 1st January.

b) When will our two watches next show the same time?

I got 25th January at noon (lunchtime). Am I right?3. When will our watches next show the same, CORRECT time?

I got 19th February at noon (lunchtime). Am I right?
 
Natasha1 said:
Ok,

a) I set my watch to the correct time at noon on 1st January. If I don't reset it, when will it next show the correct time?

I got 8pm (or 20.00) on 4th January. Can someone tell me if I am right?
No, not correct.
Natasha1 said:
2. Mrs Varma's watch (also a 12 hour watch) loses 5 minutes every 2 hours. She also sets her watch to the correct time at noon on 1st January.

b) When will our two watches next show the same time?

I got 25th January at noon (lunchtime). Am I right?
No, not correct.

Natasha1 said:
3. When will our watches next show the same, CORRECT time?

I got 19th February at noon (lunchtime). Am I right?
No, not correct.If you find my approach with the function too difficult, why don't you try what @PeroK suggested for 1a)?
 
Natasha1 said:
Ok,

a) I set my watch to the correct time at noon on 1st January. If I don't reset it, when will it next show the correct time?

I got 8pm (or 20.00) on 4th January. Can someone tell me if I am right?2. Mrs Varma's watch (also a 12 hour watch) loses 5 minutes every 2 hours. She also sets her watch to the correct time at noon on 1st January.

b) When will our two watches next show the same time?

I got 25th January at noon (lunchtime). Am I right?3. When will our watches next show the same, CORRECT time?

I got 19th February at noon (lunchtime). Am I right?

Given your answer to 1a, I don't think you've understood the problem. Imagine your watch really was 3 mins fast every 2 hours, that's only 36 minutes a day. It will, therefore, take weeks until it shows the correct time again.

I wouldn't look at questions 2 and 3 until you've understood problem 1. Go back to my suggestion in post #5 to give yourself an idea of what's happening.
 
if it gains 36mins in every 24 hours then for my watch to catch up time it will have to be 1440/36 = 40 so forty days from 1st of January which would be 10th February at noon.

Is this correct?
 
  • #10
Natasha1 said:
if it gains 36mins in every 24 hours then for my watch to catch up time it will have to be 1440/36 = 40 so forty days from 1st of January which would be 10th February at noon.

Is this correct?
Much better, but remember it is a 12 hour watch. How fast will it be when it first shows the correct time?
 
  • #11
Natasha1 said:
if it gains 36mins in every 24 hours then for my watch to catch up time it will have to be 1440/36 = 40 so forty days from 1st of January which would be 10th February at noon.

Is this correct?
That's much closer.

How many hours (on a 12-hour watch) does it need to gain to catch up? The question assumes you know that on a 12-hour watch, no distinction is made between 12 noon and 12 midnight. Perhaps you're one of those people who never wears a watch?
 
  • #12
Oh! I did not know about this! It's so confusing... No I do not have a watch, and only really get 24hrs clocks.

is it 20 days later? Is it 720/36 = 20 so on 21st of January at noon. If so, why?
 
  • #13
I think you've got the idea. Here's the sort of thing they're talking about:

clock-face-illustration-dial-as-part-analog-watch-black-red-pointers-31930665.jpg
 
  • Like
Likes   Reactions: Natasha1
  • #14
Natasha1 said:
Oh! I did not know about this! It's so confusing... No I do not have a watch, and only really get 24hrs clocks.

is it 20 days later? Is it 720/36 = 20 so on 21st of January at noon. If so, why?
Yes.

Your watch has to gain 12 hours, that's 12*60=720 minutes. As it gains 36 minutes a day, it shows the correct time again after 720/36=20 days.
 
  • #15
I see! Thanks... So for:

2)
PeroK said:
I think you've got the idea. Here's the sort of thing they're talking about:

clock-face-illustration-dial-as-part-analog-watch-black-red-pointers-31930665.jpg
Thanks :)... Much clearer!
 
  • #16
Not sure how to go about 2 and 3
 
  • #17
Natasha1 said:
Not sure how to go about 2 and 3
How far apart are the two watches after one hour? How far apart do they need to be to be showing the same time?
 
  • #18
they are 8 mins apart... then 16 then 24.. Ahhh so when does 8 fit into multiples of 60, right?
 
  • #19
8
16
24
32
40
48
56
64
72
80
88
96
104
112
120

So that's 30 hours after... So that would be 2nd January at 6pm? Is this right?
 
  • #20
Natasha1 said:
they are 8 mins apart... then 16 then 24.. Ahhh so when does 8 fit into multiples of 60, right?
I said "after one hour".
And you did not answer my second question: how far apart will they be when they first show the same time again?
 
  • #21
in one hour that would be 2.5 mins for one watch and 1.5 mins for the other so that's 4 mins difference in one hour or 8 mins in 2hrs.
 
  • #22
Natasha1 said:
in one hour that would be 2.5 mins for one watch and 1.5 mins for the other so that's 4 mins difference in one hour or 8 mins in 2hrs.
Right, but please answer my other question: how far apart will the two watches be when when they next show the same time?
 
  • #23
After (in hours) Mrs Varma's watch My watch
1 2.5 1.5
2 5 3
3 7.5 4.5
4 10 6
5 12.5 7.5
6 15 9
7 17.5 10.5
8 20 12
9 22.5 13.5
10 25 15
11 27.5 16.5
12 30 18
13 32.5 19.5
14 35 21
15 37.5 22.5So after 15hrs or 3am on 2nd January will our two watches show the same time.
 
  • #24
How on Earth do I work out 3?
 
  • #25
Natasha1 said:
After (in hours) Mrs Varma's watch My watch
1 2.5 1.5
2 5 3
3 7.5 4.5
4 10 6
5 12.5 7.5
6 15 9
7 17.5 10.5
8 20 12
9 22.5 13.5
10 25 15
11 27.5 16.5
12 30 18
13 32.5 19.5
14 35 21
15 37.5 22.5So after 15hrs or 3am on 2nd January will our two watches show the same time.
Not correct. As you said, the difference between the two watches grows by 8 minutes every 2 hours. After 15 hours the difference will only be 15*4=60 minutes.

So:
haruspex said:
how far apart will the two watches be when when they next show the same time?
 
Last edited:
  • #26
Natasha1 said:
So after 15hrs or 3am on 2nd January will our two watches show the same time.
You have not understood my question. To answer it, you don't need to know how much each watch is gaining or losing. All you need to know is that they are 12 hour watches running at different speeds. If they show the same time now, how far apart will they actually be when they next display the same time?
 
  • #27
Ok for 3? it will be 720/4 = 180 hrs or 180/12 = 15 days or 16th January at noon
 
  • #28
Natasha1 said:
Ok for 3? it will be 720/4 = 180 hrs or 180/12 = 15 days or 16th January at noon
Both wrong, but let's tackle 2 first.
 
  • #29
I don't know
 
  • #30
it loses 5x12 = 60 mins in a 12 hour day
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
5
Views
3K
  • · Replies 22 ·
Replies
22
Views
4K
Replies
5
Views
2K
Replies
9
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 3 ·
Replies
3
Views
12K
  • · Replies 5 ·
Replies
5
Views
533