Wave motion and a stretched string

Click For Summary
SUMMARY

The discussion centers on the wave motion of a stretched string as presented in Griffiths' "Introduction to Electrodynamics," specifically in chapter 9. Participants clarify that the assumption of small displacements from the string's stable equilibrium position allows for the replacement of the sine function with the tangent function due to small angle approximations. Additionally, the derivation of the second partial derivative from the Taylor series expansion is discussed, emphasizing the importance of understanding the conditions under which these mathematical transformations are valid.

PREREQUISITES
  • Understanding of wave motion principles
  • Familiarity with Taylor series expansions
  • Knowledge of partial derivatives
  • Basic concepts of equilibrium in physics
NEXT STEPS
  • Study the small angle approximation in physics
  • Review Taylor series and their applications in physics
  • Explore the derivation of wave equations for strings
  • Investigate the relationship between tension and wave speed in stretched strings
USEFUL FOR

Students of physics, particularly those studying wave mechanics, educators teaching electrodynamics, and anyone seeking to deepen their understanding of wave motion in stretched strings.

mondo
Messages
27
Reaction score
3
I continue my reading of Griffiths electrodynamics (chapter 9, electromagnetic waves) and I got stuck on this:
237fe636e4cbb4c33a445f778634b7a4.png

Author tries to prove a stretched string supports wave motion and I found it very difficult to grasp.
In the second equation, why can we replace sin function with a tangents really? What guarantees that the angles are small? Is he trying to match it to partial derivative formula?
Next, how a difference of partial derivatives $\frac{\partial_{f}}{\partial_{z}}$ became a second partial derivative in the second equation?

Thank you.
 
Physics news on Phys.org
It is the string's displacement from its stable equilibrium position (assumed horizontal) that is small (compared with the length of the string); a consequence of this is that the angle between the horizontal and the tangent to the string is everywhere small. If this assumption is not valid, then neither are the results of the analysis.

For your second question, you have from the Taylor series expansion of \frac{\partial f}{\partial z} wrt z that <br /> \left.\frac{\partial f}{\partial z}\right|_{z+ \Delta z} = \left.\frac{\partial f}{\partial z}\right|_{z} + \left.\frac{\partial^2 f}{\partial z^2}\right|_{z}\Delta z + O(\Delta z^2).
 
  • Like
Likes   Reactions: mondo
mondo said:
What guarantees that the angles are small?
It's an assumption.
 
  • Like
Likes   Reactions: mondo
pasmith said:
It is the string's displacement from its stable equilibrium position (assumed horizontal) that is small (compared with the length of the string); a consequence of this is that the angle between the horizontal and the tangent to the string is everywhere small. If this assumption is not valid, then neither are the results of the analysis.

For your second question, you have from the Taylor series expansion of \frac{\partial f}{\partial z} wrt z that <br /> \left.\frac{\partial f}{\partial z}\right|_{z+ \Delta z} = \left.\frac{\partial f}{\partial z}\right|_{z} + \left.\frac{\partial^2 f}{\partial z^2}\right|_{z}\Delta z + O(\Delta z^2).
Thanks for a repones.
As for the first part about the small angles - yes I think I got it. Thanks for mentioning the assumed position is horizontal - that helped me to visualize the movement.

As for the second derivative derivation, what is the last term in your formula -O(\Delta z^2). ?
I think in the book formula T (\frac{\partial_{f}}{\partial_{z}}|_{z+\delta z} - \frac{\partial_{f}}{\partial_{z}}|_{z}) is something (in the parenthesis) that at a glance looks very close to the derivative formula - we take value at time z+\delta z and subtract from a value at time z. The only missing thing (for it to be a derivative) is a division by this delta time. So, now, if we multiply it by this missing delta, and rewrite it as a derivative (which in this case is a second derivative) we get what's in the book. Am I right?
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
616
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
8
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
570
  • · Replies 21 ·
Replies
21
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K