I Wavefunction properties tunneling effect

Salmone
Messages
101
Reaction score
13
I am considering tunnel effect with a potential barrier of a certain height that is ##\neq 0## only for ##0 \le x \le a## . I write the Hamiltonian eigenfunctions outside the barrier as:## \psi_E(x)=\begin{cases}
e^{ikx}+Ae^{-ikx} \quad \quad x \le0 \\
Ce^{ikx} \quad \quad x\ge a \\
\end{cases} ##
where ##k^2=\frac{2mE}{\hbar^2}##. This system represents a particle that goes from ##\infnty## to ##0##, one part crosses the potential barrier and continues and one part goes back.

Now what I read in my notes is

"since the eigenfunctions of SE equation must not be equal to zero in a point with their first derivatives, then ##C \neq 0##".

How can I prove this statement? I think it is related to Cauchy's problem but I don't know how this implies that the eigenfunction would be equal to zero everywhere.
 
Last edited:
Physics news on Phys.org
Salmone said:
## \psi_E(x)=\begin{cases}
e^{ikx}+Ae^{-ikx} \quad \quad x \le0 \\
Ce^{ikx} \quad \quad x\ge a \\
\end{cases} ##
where ##k^2=\frac{2mE}{\hbar^2}##.

Now what I read in my notes is

"since the eigenfunctions of SE equation must not be equal to zero in a point with their first derivatives, then ##C \neq 0##".
If ##C = 0##, then the eigenfunction is identically zero for ##x \ge a##. I assume there are physical considerations that do not allow that.
 
We cannot answer your question, because you don't describe the specific setup considered. In QT you have to be very precise in the problem statement. Otherwise there's no chance to understand anything. Obviously your wave function is not defined in the interval ##(0,a)##. So even your state is not completely defined.
 
Salmone said:
@PeroK @vanhees71 I've edited the question.
It's been a while since I've looked at these problems, but I thought the coefficients on either side of the barrier were determined by the continuity of ##\psi(x)## and ##\frac{\partial \psi}{\partial x}## at the boundary of the barrier. So, you would need also to consider the wavefunction in the region ##0 < x < a##. That would force ##C \ne 0##.

I don't understand what this means:

Salmone said:
"since the eigenfunctions of SE equation must not be equal to zero in a point with their first derivatives, then ##C \neq 0##".
 
Last edited:
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Back
Top