I Wavefunction properties tunneling effect

Salmone
Messages
101
Reaction score
13
I am considering tunnel effect with a potential barrier of a certain height that is ##\neq 0## only for ##0 \le x \le a## . I write the Hamiltonian eigenfunctions outside the barrier as:## \psi_E(x)=\begin{cases}
e^{ikx}+Ae^{-ikx} \quad \quad x \le0 \\
Ce^{ikx} \quad \quad x\ge a \\
\end{cases} ##
where ##k^2=\frac{2mE}{\hbar^2}##. This system represents a particle that goes from ##\infnty## to ##0##, one part crosses the potential barrier and continues and one part goes back.

Now what I read in my notes is

"since the eigenfunctions of SE equation must not be equal to zero in a point with their first derivatives, then ##C \neq 0##".

How can I prove this statement? I think it is related to Cauchy's problem but I don't know how this implies that the eigenfunction would be equal to zero everywhere.
 
Last edited:
Physics news on Phys.org
Salmone said:
## \psi_E(x)=\begin{cases}
e^{ikx}+Ae^{-ikx} \quad \quad x \le0 \\
Ce^{ikx} \quad \quad x\ge a \\
\end{cases} ##
where ##k^2=\frac{2mE}{\hbar^2}##.

Now what I read in my notes is

"since the eigenfunctions of SE equation must not be equal to zero in a point with their first derivatives, then ##C \neq 0##".
If ##C = 0##, then the eigenfunction is identically zero for ##x \ge a##. I assume there are physical considerations that do not allow that.
 
We cannot answer your question, because you don't describe the specific setup considered. In QT you have to be very precise in the problem statement. Otherwise there's no chance to understand anything. Obviously your wave function is not defined in the interval ##(0,a)##. So even your state is not completely defined.
 
Salmone said:
@PeroK @vanhees71 I've edited the question.
It's been a while since I've looked at these problems, but I thought the coefficients on either side of the barrier were determined by the continuity of ##\psi(x)## and ##\frac{\partial \psi}{\partial x}## at the boundary of the barrier. So, you would need also to consider the wavefunction in the region ##0 < x < a##. That would force ##C \ne 0##.

I don't understand what this means:

Salmone said:
"since the eigenfunctions of SE equation must not be equal to zero in a point with their first derivatives, then ##C \neq 0##".
 
Last edited:
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Back
Top