# What is Wavefunction: Definition and 575 Discussions

A wave function in quantum physics is a mathematical description of the quantum state of an isolated quantum system. The wave function is a complex-valued probability amplitude, and the probabilities for the possible results of measurements made on the system can be derived from it. The most common symbols for a wave function are the Greek letters ψ and Ψ (lower-case and capital psi, respectively).
The wave function is a function of the degrees of freedom corresponding to some maximal set of commuting observables. Once such a representation is chosen, the wave function can be derived from the quantum state.
For a given system, the choice of which commuting degrees of freedom to use is not unique, and correspondingly the domain of the wave function is also not unique. For instance, it may be taken to be a function of all the position coordinates of the particles over position space, or the momenta of all the particles over momentum space; the two are related by a Fourier transform. Some particles, like electrons and photons, have nonzero spin, and the wave function for such particles includes spin as an intrinsic, discrete degree of freedom; other discrete variables can also be included, such as isospin. When a system has internal degrees of freedom, the wave function at each point in the continuous degrees of freedom (e.g., a point in space) assigns a complex number for each possible value of the discrete degrees of freedom (e.g., z-component of spin) – these values are often displayed in a column matrix (e.g., a 2 × 1 column vector for a non-relativistic electron with spin 1⁄2).
According to the superposition principle of quantum mechanics, wave functions can be added together and multiplied by complex numbers to form new wave functions and form a Hilbert space. The inner product between two wave functions is a measure of the overlap between the corresponding physical states, and is used in the foundational probabilistic interpretation of quantum mechanics, the Born rule, relating transition probabilities to inner products. The Schrödinger equation determines how wave functions evolve over time, and a wave function behaves qualitatively like other waves, such as water waves or waves on a string, because the Schrödinger equation is mathematically a type of wave equation. This explains the name "wave function", and gives rise to wave–particle duality. However, the wave function in quantum mechanics describes a kind of physical phenomenon, still open to different interpretations, which fundamentally differs from that of classic mechanical waves.In Born's statistical interpretation in non-relativistic quantum mechanics,
the squared modulus of the wave function, |ψ|2, is a real number interpreted as the probability density of measuring a particle as being at a given place – or having a given momentum – at a given time, and possibly having definite values for discrete degrees of freedom. The integral of this quantity, over all the system's degrees of freedom, must be 1 in accordance with the probability interpretation. This general requirement that a wave function must satisfy is called the normalization condition. Since the wave function is complex valued, only its relative phase and relative magnitude can be measured—its value does not, in isolation, tell anything about the magnitudes or directions of measurable observables; one has to apply quantum operators, whose eigenvalues correspond to sets of possible results of measurements, to the wave function ψ and calculate the statistical distributions for measurable quantities.

View More On Wikipedia.org
1. ### I When does the separation of variables work

When studying the hydrogen atom, given that the potential depends only on the distance and not an any angle, we can do a separation of variables of the wavefunction as the product between a function depending only on the distance between particles (protons and electrons) and a spherical...
2. ### B Does the wavefunction of an unbound electron collapse while it's captured by a proton?

And then, if the wavefunction does collapse as the electron binds to the proton, is that collapse temporary, or will the wavefunction remain collapsed until the electron escapes and is free again? Or, will the wavefunction of a freshly bound electron eventually return to a max superposition...
3. ### B Wavefunction and Lorentz Invariance

What are the implications that the wavefunction is not Lorentz invariant?
4. ### <x|P|x'> in Dirac formalism

What is ##<x|P|x'>##? (for particle in 1d, and ##\hbar = 1##)?\begin{align*} <x|P|x'> &= \int dp' <x|P|p'><p'|x'> \\ &= \int dp' \ p' <x|p'> <p'|x'> \\ &= \int dp' \ p' \frac{1}{\sqrt{2\pi}} e^{ip'x} \frac{1}{\sqrt{2\pi}} e^{-ip'x'} \\ &= \frac{1}{2\pi} \int dp' \ p' e^{ip'(x-x')} \end{align*}

48. ### I Does Decoherence get rid of all Quantumness?

The answer is no and even when decoherence occurs for Wigner's Friend in the lab, quantum coherence remains. Let's start with the paper that illustrates this. Assisted Macroscopic Quantumness CONT. https://arxiv.org/abs/1711.10498 Wow, I recently read this paper and the results are simply...
49. ### A Graphene wavefunction expressed in tight binding form

In the framework of tight binding approximation, does the wavefunction for atom A (or B) has two spinorial components(2 components) in "real space"? If so how does this spinorial component propagate in the graphene?
50. ### I Correlation between Symmetry number & Total wavefunction

Some rotational quantum states are not allowed for a rotating particle. At quantum level, these "forbidden" quantum states is based on the requirement of the total wavefunction being either symmetrical or anti-symmetrical, depending on whether the particle is a fermion or boson. The particle's...