Weak Gravitational Field & Wave Eq. - Analyzing Effects on Massless Scalar Field

Click For Summary

Discussion Overview

The discussion centers on the propagation of a massless scalar field in a weak gravitational field, specifically analyzing the effects on the field's behavior as described by a wave equation in curved spacetime. Participants explore the implications of perturbative approaches and the role of various parameters in the wave equation.

Discussion Character

  • Exploratory, Technical explanation, Debate/contested

Main Points Raised

  • One participant presents a wave equation for a massless scalar field in a weak gravitational field, noting the presence of perturbation terms and expressing concern about the strength of these perturbations.
  • Another participant questions the clarity of the original post and suggests rephrasing for better understanding.
  • A participant clarifies their focus on the propagation of light in curved spacetime and discusses the implications of the gravitational field on the transverse profile of a Gaussian beam.
  • Concerns are raised about the magnitude of terms involving ##k^2## and their potential impact on the beam's behavior, with one participant suggesting that these terms might not be as significant due to the presence of the perturbation parameter ##\epsilon##.
  • Another participant notes that the ##k^2## factor arises from second spatial derivatives and suggests that it should be present in the equation.
  • A participant acknowledges the need for careful treatment of covariant derivatives and expresses intent to explore alternative approaches.
  • One participant reports completing calculations that indicate the effect of ##k^2## is very small, leading to negligible decoherence, and attributes earlier confusion to a misinterpretation of a paper with incorrect equations.

Areas of Agreement / Disagreement

Participants express differing views on the significance of the perturbation terms and the role of the ##k^2## factor, indicating that the discussion remains unresolved regarding the implications of these terms in the context of the wave equation.

Contextual Notes

Participants mention the dependence on the perturbation parameter ##\epsilon## and the need for careful consideration of covariant derivatives, highlighting potential limitations in their calculations and assumptions.

Haorong Wu
Messages
419
Reaction score
90
TL;DR
I derive the wave equations in a curved spacetime. I do not understand why it is strongly affected by the gravitational field.
A massless scalar field in a curved spacetime propagates as $$(-g)^{-1/2}\partial_\mu(-g)^{1/2}g^{\mu\nu}\partial_\nu \psi=0 .$$

Suppose the gravitational field is weak, and ##g_{\mu\nu}=\eta_{\mu\nu}+\epsilon \gamma_{\mu\nu}## where ##\epsilon## is the perturbation parameter. And let the field be ##\psi=A e^{ik(x0-x3)}##.

Then the wave equation can be solved up to the first order of ##\epsilon##, giving $$2ik\partial_3 A-\nabla ^2 A+\epsilon [-\frac k 2 (2k(\gamma_{00}+\gamma_{33})+i(\partial_3 \gamma_{00}-\partial_3 \gamma_{11}-\partial_3 \gamma_{22}+\partial_3 \gamma_{33}+2\partial_2 \gamma_{23}+2\partial_1 \gamma_{13}))A+\cdots] =0$$ where terms with the derivatives of ##A## is omitted.

I note that there are ##k^2## inside the perturbation terms for ##A##. For a light with wavelength of ##1000 ~\rm{nm}##, ##k## will be about ##6 \times 10^6##. The metric for the Earth will let ##\gamma_{00}+\gamma_{33}## be about ## \frac {mz^2}{(x^2+y^2+z^2)^{3/2}} \approx 1.4\times 10^{-9}## for ##x=y=0, z=6.37\times10^6## is the radius of the earth, ##m=8.87\times 10^{-3}## is the Schwarzschild radius of earth.

Hence it appears that the perturbation for ##A## is quite strong even in a weak gravitational field. But this should be wrong. But where did I make a mistake?
 
Physics news on Phys.org
Maybe it's me, but I don't get it what you're doing here. What exactly do you mean by "the quite strong perturbation for A"? Also, some text appears to be missing.

Maybe if you rephrase your question more carefully, you'll gain more insight yourself also 😉
 
Hi, @haushofer . Thank you for your advice. I apologize for not stating clearly.

I am studying the propagation of light in curved spacetime, especially the propagation of a Gaussian beam defined by ##\psi=A(\mathbf x) e^{ik(x0-x3)}## where ##A(\mathbf x)## is the transverse profile which does not depend on time ##x^0##.

In a flat spacetime, the wave equation can be solved to be $$2ik\partial_3 A-\nabla ^2 A=0 .$$

Meanwhile, if the spacetime is curved, the metric in the wave equation $$(g^{\mu\nu}\partial_\mu\partial \nu-\xi R) \psi=0$$ with ## R=0## for Schwarzschild metrics will induce extra terms, i.e., \begin{align}&2ik\partial_3 A-\nabla ^2 A+\epsilon [-\frac k 2 (2k(\gamma_{00}+\gamma_{33})\nonumber \\&~~~~+i(\partial_3 \gamma_{00}-\partial_3 \gamma_{11}-\partial_3 \gamma_{22}+\partial_3 \gamma_{33}+2\partial_2 \gamma_{23}+2\partial_1 \gamma_{13}))A+\cdots] =0. \nonumber \end{align}

I am troubled by the ##k^2## factor in the term $$-k^2( \gamma_{00}+\gamma_{33} )A,$$ since it will give a quite large number. Then when the beam is sent from the surface of earth, its transverse profile will be strongly affected by gravitational field. But that should not happen.

I must make some mistakes somewhere, but I still could not figure it out.
 
Won't it give a number of size similar to ##\nabla^2 A##? Then there is an ##\epsilon## in front.
If I am totally wrong, this is not my field !
 
Thanks, @hutchphd . There are terms for ##\nabla^2 A## from the gravitational field, but they do not contain any ##k##. Hence their factors will be quite small and I do not include them.
 
Without having done the calculation: dimensionally this k^2 comes from the second spatial derivative on psi, right? So it should be there.

Btw, your partial derivative with mu in your second post should be a covariant one.
 
@haushofer

Yes, it comes from the second spatial derivatives with respect to ##x^0## and ##x^3##. Well, I am trying another approach. Hope it will somehow work out.

And, yes, that should be ##\nabla_\mu \nabla_\nu##. It will add some Christoffel symbols and the terms with ##k^2## will be the same. It seems in some early literature, people would use ##\partial## to represent covariant derivatives. I will be more careful.
 
How large is epsilon compared to k?
 
haushofer said:
How large is epsilon compared to k?
Hi, @haushofer . I have complete the calculation.

##\epsilon## is the perturbation parameter which will be set to identiy at the end. It turns out that somehow the effect of ##k^2## is very very small. The decoherence induced by gravitational fields will be negligible.

I was misled by a paper which gives a wrong equation. With that equation, I get the result that the decoherence is surprisingly large. Finally, I realize that the equation has a wrong dimension. After I use a correct one, I get the expected results.

Cheers.
 
  • #10
Ok. Maybe it's nice for future reference for others to show some details,but don't feel obliged ;)
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 14 ·
Replies
14
Views
5K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 15 ·
Replies
15
Views
2K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K