Webpage title: The Importance of Correct Order in the Definition of Limit

  • Context: MHB 
  • Thread starter Thread starter CStudent
  • Start date Start date
  • Tags Tags
    Definition Limit
Click For Summary
SUMMARY

The discussion emphasizes the critical importance of the correct order in the definition of limits in calculus. Specifically, the condition $$*\ \ \forall N\in\Bbb{N}\ \exists\epsilon>0 \text{ s.t. } \forall n>N \text{ we get } |a_n-L|<\epsilon$$ does not imply that $$\lim_{n\to\infty}a_n = L$$, as illustrated by the example where $a_n = 1$ and $L = 0$. The correct definition requires that the choice of $\epsilon$ precedes the choice of $N$, which is essential for maintaining the integrity of the limit statement. The final condition $$b = |a_n-L| \to0\ \Longrightarrow\ \lim_{n\to\infty}a_n = L$$ is affirmed as correct.

PREREQUISITES
  • Understanding of limits in calculus
  • Familiarity with epsilon-delta definitions
  • Basic knowledge of sequences and convergence
  • Ability to manipulate mathematical inequalities
NEXT STEPS
  • Study the epsilon-delta definition of limits in detail
  • Explore examples of sequences that converge and diverge
  • Learn about the implications of order in mathematical definitions
  • Investigate the concept of uniform convergence in sequences
USEFUL FOR

Students of calculus, mathematics educators, and anyone seeking a deeper understanding of the formal definitions of limits and their implications in mathematical analysis.

CStudent
Messages
14
Reaction score
0
ovsFyM1.png
 
Last edited by a moderator:
Physics news on Phys.org
Hi CStudent, and welcome to MHB!

The condition $$*\ \ \forall N\in\Bbb{N}\ \exists\epsilon>0 \text{ s.t. } \forall n>N \text{ we get } |a_n-L|<\epsilon$$ does not imply that $$\lim_{n\to\infty}a_n = L.$$

For an example of how this can go wrong, suppose that $a_n = 1$ for all $n$ and that $L=0$. If you choose $\epsilon = 2$, the condition $|a_n-L|<\epsilon$ becomes $|1-0|<2$. That condition certainly holds for all $n$, but it is not true that $$\lim_{n\to\infty}a_n = L.$$ In fact, $$\lim_{n\to\infty}a_n = 1$$, which is different from $L$.

That example illustrates that in definitions like this it is very important to put things in the correct order. In the definition of limit, the choice of $\epsilon$ comes first, and then the choice of $N$ (which will usually depend on $\epsilon$) comes next. But in the condition $*$, you have put the $N$ before the $\epsilon$. That changes the whole meaning of the statement.

Your other condition $*$ is also not equivalent to the definition of limit.

But your final condition (the statement that $$b = |a_n-L| \to0\ \Longrightarrow\ \lim_{n\to\infty}a_n = L$$) is correct.
 
Opalg said:
Hi CStudent, and welcome to MHB!

The condition $$*\ \ \forall N\in\Bbb{N}\ \exists\epsilon>0 \text{ s.t. } \forall n>N \text{ we get } |a_n-L|<\epsilon$$ does not imply that $$\lim_{n\to\infty}a_n = L.$$

For an example of how this can go wrong, suppose that $a_n = 1$ for all $n$ and that $L=0$. If you choose $\epsilon = 2$, the condition $|a_n-L|<\epsilon$ becomes $|1-0|<2$. That condition certainly holds for all $n$, but it is not true that $$\lim_{n\to\infty}a_n = L.$$ In fact, $$\lim_{n\to\infty}a_n = 1$$, which is different from $L$.

That example illustrates that in definitions like this it is very important to put things in the correct order. In the definition of limit, the choice of $\epsilon$ comes first, and then the choice of $N$ (which will usually depend on $\epsilon$) comes next. But in the condition $*$, you have put the $N$ before the $\epsilon$. That changes the whole meaning of the statement.

Your other condition $*$ is also not equivalent to the definition of limit.

But your final condition (the statement that $$b = |a_n-L| \to0\ \Longrightarrow\ \lim_{n\to\infty}a_n = L$$) is correct.

Great, thank you1
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K