Week #36 - Simplifying Trigonometric Expressions | December 3rd, 2012

  • Thread starter Thread starter Jameson
  • Start date Start date
Click For Summary
SUMMARY

The forum discussion focuses on simplifying the expression \((a \cos x + b \sin x)^2 + (b \cos x - a \sin x)^2\). Two members, soroban and MarkFL, provided correct solutions that both lead to the conclusion that the expression simplifies to \(a^2 + b^2\). Soroban's solution utilized trigonometric identities directly, while MarkFL employed linear combination identities and the Pythagorean identity to arrive at the same result. The discussion highlights the effectiveness of different approaches in solving trigonometric simplifications.

PREREQUISITES
  • Understanding of trigonometric identities, including Pythagorean identities
  • Familiarity with linear combinations of trigonometric functions
  • Knowledge of inverse trigonometric functions such as \(\tan^{-1}\) and \(\cot^{-1}\)
  • Basic algebraic manipulation skills for simplifying expressions
NEXT STEPS
  • Study the derivation and applications of Pythagorean identities in trigonometry
  • Learn about linear combination identities and their use in simplifying trigonometric expressions
  • Explore inverse trigonometric functions and their properties
  • Practice simplifying complex trigonometric expressions using various identities
USEFUL FOR

Students, educators, and mathematicians interested in trigonometry, particularly those looking to enhance their skills in simplifying trigonometric expressions and understanding the underlying identities.

Jameson
Insights Author
Gold Member
MHB
Messages
4,533
Reaction score
13
Simplify [math]\left({a \cos x + b \sin x}\right)^2 + \left({b \cos x - a \sin x}\right)^2[/math]
--------------------
 
Physics news on Phys.org
Congratulations to the following members for their correct solutions:

1) MarkFL
2) Sudharaka
3) soroban
4) BAdhi
5) Siron

Solution #1 (from soroban):[sp] Simplify: $(a\cos x + b\sin x)^2 + (b\cos x - a\sin x)^2$

We have: .[/color]$a^2\cos^2\!x + 2ab\sin x\cos x + b^2\sin^2\!x + b^2\cos^2\!x - 2ab\sin x\cos x + a^2\sin^2\!x $

. . . . . [/color]$=\;a^2\sin^2\!x + a^2\cos^2\!x + b^2\sin^2\!x + b^2\cos^2\!x $

. . . . . [/color]$=\;a^2\underbrace{(\sin^2\!x + \cos^2\!x)}_{\text{This is 1}} + b^2\underbrace{(\sin^2\!x + \cos^2\!x)}_{\text{This is 1}}$

. . . . . [/color]$=\;a^2 + b^2$
[/size][/sp]

Solution #2 (from MarkFL):[sp]Using linear combination identities, we have:

$\displaystyle (a^2+b^2)\sin^2\left(x+\tan^{-1}\left(\frac{a}{b} \right) \right)+(a^2+b^2)\sin^2\left(x-\cot^{-1}\left(\frac{a}{b} \right)+\pi \right)$

Using the identity:

$\displaystyle \tan^{-1}(\theta)+\cot^{-1}(\theta)=\frac{\pi}{2}$ we may write:

$\displaystyle (a^2+b^2)\sin^2\left(x+\tan^{-1}\left(\frac{a}{b} \right) \right)+(a^2+b^2)\sin^2\left(x+\tan^{-1}\left(\frac{a}{b} \right)+\frac{\pi}{2} \right)$

Using the identity $\displaystyle \sin\left(\theta+\frac{\pi}{2} \right)=\cos(\theta)$, we have:

$\displaystyle (a^2+b^2)\sin^2\left(x+\tan^{-1}\left(\frac{a}{b} \right) \right)+(a^2+b^2)\cos^2\left(x+\tan^{-1}\left(\frac{a}{b} \right) \right)$

$\displaystyle (a^2+b^2)\left(\sin^2\left(x+\tan^{-1}\left(\frac{a}{b} \right) \right)+\cos^2\left(x+\tan^{-1}\left(\frac{a}{b} \right) \right) \right)$

Using the Pythagorean identity $\displaystyle \sin^2(\theta)+\cos^2(\theta)=1$ we are left with:

$\displaystyle a^2+b^2$[/sp]
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K