Graduate Weinberg's proof of ##{T^{\mu\nu}}_{,\nu}=0## for a perfect fluid

Click For Summary
Weinberg's proof of the conservation of the energy-momentum tensor, expressed as ##{T^{\mu\nu}}_{,\nu}=0##, includes a negative sign at the start due to the identity involving the delta function. The integration by parts-like step is clarified as a product rule for differentiation, which does not require actual integration. The varying notation used by Weinberg complicates the understanding of his proof. Despite the confusion, the discussion reveals insights into the mathematical framework behind the proof. Overall, the clarification helps in grasping the nuances of Weinberg's work.
Kostik
Messages
274
Reaction score
32
TL;DR
His proof is hard to follow, can someone help?
Weinberg ("Gravitation and Cosmology") defines the energy-momentum tensor ##T^{\mu\nu}## in equations (2.8.1)-(2.8.2). He proves $${T^{\mu\nu}}_{,\nu}=0$$ on page 44. But:

(1) Why does he have a minus sign at the very beginning; see the equation which starts $$\frac{\partial}{\partial x^i}T^{\alpha i}(x,t) =$$ when there is no such minus sign in (2.8.2)?

(2) How does he do what looks like an integration by parts (third equality) when there is no integration?

What makes his work more confusing is that on pp. 43-44 he alternately uses the notation ##({\bf{x}}t)##, ##(x)##, ##(x,t)## and ##({\bf{x}},t)##.
 
Physics news on Phys.org
Kostik said:
His proof is hard to follow, can someone help?
(1) Weinberg gets his negative sign by using the identity: $$\frac{\partial}{\partial x^{i}}\delta^3\left(\vec{x}-\vec{x}_{n}\right)\equiv -\frac{\partial}{\partial x_{n}^{i}}\delta^3\left(\vec{x}-\vec{x}_{n}\right)$$
(2) This is just the product rule for differentiation written in the form:$$-u\left(t\right)\frac{\partial v\left(t\right)}{\partial t}=-\frac{\partial}{\partial t}\left(u\left(t\right)v\left(t\right)\right)+\frac{\partial u\left(t\right)}{\partial t}v\left(t\right)$$
 
  • Like
Likes dextercioby and Kostik
Of course; thanks. I think I have found another proof, but I should have seen this.
 
A good one to everyone. My previous post on this subject here on the forum was a fiasco. I’d like to apologize to everyone who did their best to comment and got ignored by me. In defence, I could tell you I had really little time to spend on discussion, and just overlooked the explanations that seemed irrelevant (why they seemed irrelevant, I will tell you at the end of this). Before we get to the point, I will kindly ask you to comment having considered this text carefully, because...

Similar threads

  • · Replies 38 ·
2
Replies
38
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 50 ·
2
Replies
50
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 36 ·
2
Replies
36
Views
1K
  • · Replies 17 ·
Replies
17
Views
2K
Replies
22
Views
4K
  • · Replies 22 ·
Replies
22
Views
3K