A Weinberg's proof of ##{T^{\mu\nu}}_{,\nu}=0## for a perfect fluid

Click For Summary
Weinberg's proof of the conservation of the energy-momentum tensor, expressed as ##{T^{\mu\nu}}_{,\nu}=0##, includes a negative sign at the start due to the identity involving the delta function. The integration by parts-like step is clarified as a product rule for differentiation, which does not require actual integration. The varying notation used by Weinberg complicates the understanding of his proof. Despite the confusion, the discussion reveals insights into the mathematical framework behind the proof. Overall, the clarification helps in grasping the nuances of Weinberg's work.
Kostik
Messages
274
Reaction score
32
TL;DR
His proof is hard to follow, can someone help?
Weinberg ("Gravitation and Cosmology") defines the energy-momentum tensor ##T^{\mu\nu}## in equations (2.8.1)-(2.8.2). He proves $${T^{\mu\nu}}_{,\nu}=0$$ on page 44. But:

(1) Why does he have a minus sign at the very beginning; see the equation which starts $$\frac{\partial}{\partial x^i}T^{\alpha i}(x,t) =$$ when there is no such minus sign in (2.8.2)?

(2) How does he do what looks like an integration by parts (third equality) when there is no integration?

What makes his work more confusing is that on pp. 43-44 he alternately uses the notation ##({\bf{x}}t)##, ##(x)##, ##(x,t)## and ##({\bf{x}},t)##.
 
Physics news on Phys.org
Kostik said:
His proof is hard to follow, can someone help?
(1) Weinberg gets his negative sign by using the identity: $$\frac{\partial}{\partial x^{i}}\delta^3\left(\vec{x}-\vec{x}_{n}\right)\equiv -\frac{\partial}{\partial x_{n}^{i}}\delta^3\left(\vec{x}-\vec{x}_{n}\right)$$
(2) This is just the product rule for differentiation written in the form:$$-u\left(t\right)\frac{\partial v\left(t\right)}{\partial t}=-\frac{\partial}{\partial t}\left(u\left(t\right)v\left(t\right)\right)+\frac{\partial u\left(t\right)}{\partial t}v\left(t\right)$$
 
  • Like
Likes dextercioby and Kostik
Of course; thanks. I think I have found another proof, but I should have seen this.
 
Moderator's note: Spin-off from another thread due to topic change. In the second link referenced, there is a claim about a physical interpretation of frame field. Consider a family of observers whose worldlines fill a region of spacetime. Each of them carries a clock and a set of mutually orthogonal rulers. Each observer points in the (timelike) direction defined by its worldline's tangent at any given event along it. What about the rulers each of them carries ? My interpretation: each...

Similar threads

Replies
38
Views
871
Replies
8
Views
2K
Replies
3
Views
1K
  • · Replies 50 ·
2
Replies
50
Views
3K
Replies
4
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 36 ·
2
Replies
36
Views
942
  • · Replies 17 ·
Replies
17
Views
2K
Replies
22
Views
4K