What Are Examples of Torsion in Homology?

  • Context: Graduate 
  • Thread starter Thread starter Physics Monkey
  • Start date Start date
  • Tags Tags
    Torsion
Click For Summary
SUMMARY

This discussion focuses on examples of torsion in homology, particularly in the context of teaching and research in physics. Key examples include the real projective plane (RP^2), the Klein bottle, and RP^3, which illustrate various properties of torsion. The Hansche-Wendt manifold is also highlighted as a flat 3-manifold with interesting torsion characteristics, specifically 2-torsion. These examples serve both pedagogical and research purposes, particularly for physicists interested in geometrical constructions.

PREREQUISITES
  • Understanding of homology and cohomology concepts
  • Familiarity with manifolds, particularly unorientable and flat manifolds
  • Knowledge of algebraic topology terminology
  • Basic understanding of geometric representations in topology
NEXT STEPS
  • Research the properties of the Klein bottle and its homology groups
  • Explore the structure and characteristics of the Hansche-Wendt manifold
  • Study the implications of torsion in algebraic topology
  • Investigate the relationship between flat manifolds and their homological properties
USEFUL FOR

Physicists, mathematicians, and educators interested in algebraic topology, particularly those teaching or researching homology and its applications in geometry.

Physics Monkey
Homework Helper
Messages
1,363
Reaction score
34
Hi everyone,

What I'm looking for are good examples demonstrating torsion in homology. The basic example I know is RP^2, but I suspect there are many more good examples out there. I am interested in the topic both for fun and as part of my research. In addition, I will be teaching a class soon which will involve discussions of homology (in physics). I am primarily a physicist and will be speaking primarily to physicists, so the best examples for my purposes are relatively geometrical constructions, but I'll take anything you can give. Also, I would personally be interested in excellent (pedagogical or otherwise) discussions of the topic even if they are primarily mathematical.

Thanks very much!
 
Physics news on Phys.org
Physics Monkey said:
Hi everyone,

What I'm looking for are good examples demonstrating torsion in homology. The basic example I know is RP^2, but I suspect there are many more good examples out there. I am interested in the topic both for fun and as part of my research. In addition, I will be teaching a class soon which will involve discussions of homology (in physics). I am primarily a physicist and will be speaking primarily to physicists, so the best examples for my purposes are relatively geometrical constructions, but I'll take anything you can give. Also, I would personally be interested in excellent (pedagogical or otherwise) discussions of the topic even if they are primarily mathematical.

Thanks very much!

perhaps the most vivid examples are unorientable manifolds of which Rp^2 is an example. These manifolds all have Z/2 integral cohomology in the top dimension.

The Klein bottle for example is an easy one and can be demonstrated with a picture. You can triangulate it and show that the simplices can not be oriented to cancel all of the edges.

RP3 is another great example. It is orientable but it has Z/2 fundamental group and Z/2 second cohomology. One can show the torsion directly if one first thinks of it as SO(3) and then let it act transitively without fixed points on the tangent circle bundle of the 2 sphere to see that it is diffeomorphic to the tangent circle bundle of S^2. You can then demonstrate a 2 torsion loop in the tangent circle bundle with pictures. It is also a bit surprising since the 2 sphere itself is simply connected and orientable.

Many flat manifolds have all kinds of homology torsion and I could give you some examples if you like. Their homology is a little hard to compute but I will try if you want - say a couple of 3 manifolds. They can be pictured as cubes with faces identified and are easy to picture. If you have the patience you could illustrate how the torsion arises with pictures.
 
Hi wofsy,

Thanks for your reply, it was very helpful. I will try the klein bottle and RP^3 myself. Regarding the flat manifolds, what you have in mind are things like 3-tori but with twisted identifications?
 
Physics Monkey said:
Hi wofsy,

Thanks for your reply, it was very helpful. I will try the klein bottle and RP^3 myself. Regarding the flat manifolds, what you have in mind are things like 3-tori but with twisted identifications?

They are quotients of flat 3 tori by a finite group of isometries just as the Kelin bottle is the quotient of the flat 2 torus by an action of Z/2.
 
Hi wofsy,

Thanks for the examples.
 
Physics Monkey said:
Hi wofsy,

Thanks for the examples.

your welcome.

Here is a famous flat 3 manifold.

Start with the standard lattice in R^3. The quotient of R^3 by this lattice is a flat 3 torus.

Add to this lattice the following isometries. (x,y,z) - > (x + 1/2,-y,-z)
(x,y,z) -> (-x, y+1/2, -z+1/2) and the product, (x,y,z) -> (-x + 1/2, -y + 1/2, z+1/2).

The group of isometries that these generate covers the Hansche-Wendt manifold. It is the quotient of the 3 torus by an action of Z/2 + Z/2.


You can picture it as the standard 3 cube of edge length 1/2 with identifications. It is easy to picture.


This manifold is orientable because all of the covering transformations are orientation preserving.

It has first Betti number zero because each axis is reflected by one of the covering transformations. thus its first homology is entirely torsion ( 2 torsion). By Poincare duality its second cohomology is entirely torsion.

Also it is easy to check that the first integer cohomology is zero by using the isomorphism H^1(Hansche-Wendt manifold:Z) = Hom( group of covering transformations:Z) and checking that there are no homomorphisms.

The torsion arises from the reflections of the axes from the added elements of the group of covering isometries. If you draw the cube with identifications you can see Klein bottles out the wazoo inside of this manifold.
 

Similar threads

  • · Replies 17 ·
Replies
17
Views
9K
  • · Replies 25 ·
Replies
25
Views
860
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 12 ·
Replies
12
Views
6K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K