@WWGD I am not. sure what you mean by a hole. Do you have an intuitive idea?
Here is why I ask.
The third homotopy group of the 2 sphere is ##Z##. So one might be tempted to say that the 2 sphere has a 3 dimensional hole. But it is a 2 dimensional manifold. Hmm...
The second homotopy group of the two dimensional torus is zero. So no hole there. But its second homology is ##Z## so maybe one needs homology as well. But then underlying this there must be some non- formal idea of what a hole is.
I suppose one might say that if a closed n-manifold surrounds a compact (n+1) dimensional volume, it creates a hole in some sense. But some n-manifolds do not surround a volume for instance the projective plane is not the boundary of a 3 manifold. Still, one might abandon homotopy and homology and instead say that a closed n manifold forms a n dimensional hole if it is a boundary of another manifold. In that case the projective plane does not form a two dimensional hole.
The Klein bottle is a boundary so by this idea it would form a 2 dimensional hole. On the other hand, its second homotopy group is zero and its second integer homology group is zero. One might say that its second integer cohomology group is ##Z_2## but then what is meant by a hole whose double is not a hole?
More generally what is meant by a hole that is detected by a torsion homology or homotopy class?
Another confusing case to me is a space with a non-abelian fundamental group. What kind of hole is made by a closed loop that is the boundary of a two dimensional singular chain? An example of historical interest is the Poincare homology 3 sphere. Its fundamental group has order 120 and is a simple group. So every homotopy class is a homology boundary.