MHB What are the different ways to place two objects in five slots?

tmt1
Messages
230
Reaction score
0
I'm getting these concepts confused.

If I have an object called $x$, and I have five places or slots to put the object, how many ways could 2 $x$s be places in the 5 spaces?

Example:

x x _ _ _
x _ x _ _
x _ _ x _
x _ _ _ x
_ x x _ _
_ x _ x _
_ x _ _ x
_ _ x x _
_ _ x _ x
_ _ _ x x

So in this example there are 10 ways to place the $x$s (am I missing any?).

So would this be a combination with repetition, permutation or something else, and what formula can I use to calculate this?
 
Physics news on Phys.org
This would be a combination, since order doesn't matter. Here you are simply looking to find how many ways there are to choose 2 from 5:

$$N={5 \choose 2}=\frac{5!}{2!(5-2)!}=10$$

You have 5 choices for the first x and 4 choices for the second, and by the fundamental counting principle, this is $5\cdot4=20$ ways to place the two x's, but since the two x's are identical, then the order doesn't matter, so we have to divide by the number of ways to order the 2 x's which is $2!=2$, and so we find we have 10 different placements. If the two things you are placing into the 5 slots are different, say you are going to place an x and a y, then order would matter and there would be 20 permutations. :D
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top