What are the E, pi, phi constants relations

  • Thread starter Thread starter MathematicalPhysicist
  • Start date Start date
  • Tags Tags
    Phi Pi
Click For Summary
The discussion explores the relationships between the mathematical constants e, π, and φ, noting that while e and π are transcendental numbers, φ is algebraic. Key identities such as Euler's formula, e^(iπ) + 1 = 0, highlight profound connections among these constants. The conversation also touches on methods to calculate π and e through power series and the significance of the golden ratio in relation to Fibonacci numbers. Participants express curiosity about the mathematical properties and identities involving these constants, emphasizing their importance in mathematics. Overall, the thread illustrates the intricate relationships and identities linking these fundamental constants.
MathematicalPhysicist
Science Advisor
Gold Member
Messages
4,662
Reaction score
372
do those constants have any relation to each other?
does something like pi-e or pi/e has any significance?
 
Mathematics news on Phys.org
Well, they are real numbers! Any other relationship I suspect is more "number mysticism" than mathematics. (Phi, in any case, is an algebraic number while e and pi are not.)
 
yes, there are a few identites in maths such as

ii = e-π/2 and -1 = eπi
 
If it's any help these are the power series for [pi] and e:

Code:
         r=[oo]
[pi] = 4 * [sum]  ((-1)^r) = 4 - 4 + 4 - 4 + 4 
         r=1 (------)       -   -   -   - ... etc.
             ( 2r-1 )       3   5   7   9 

And

    r=[oo]
e = [sum]  (   1  ) = 1  + 1  + 1  + 1  + 1           = 1 + 1 + 1 + 1 + 1
    r=1 (------)   --   --   --   --   -- ... etc.           -   -   -- ... etc.
        ((r-1)!)   0!   1!   2!   3!   4!                    2   6   24

[pi] can also be obtained like this:

x * Sin (180/x) where x is a very large number and 180/x is in degrees.

I've attached a script to calculate pi and e using the above power series', however I have not been able to calculate pi using the Sin method as JavaScript assumes that the angle is measured in radians and it does not have a built in Math.pi method to allow me to convert the angle from radians into degrees.
Be careful if you are calculating pi to 1,000,000 iterations, I have an Athlon 1800+ and it caused my PC to hang for a couple of seconds, although I was listening to music at the time.

If you want to view the source, generally in Windows browsers, you can go View > Source.
 

Attachments

Last edited:
e(pi)i=-1
 
Originally posted by mathman
e(pi)i=-1
A few years back I took Complex Analysis from Dr. King, then Chairman of the Lehigh U Math Department. He spent a fair amount of time with this relationship. He preferred to write it

eΠi+1=0
This expression relates 5 of the most important numbers of mathematics, Pi, e, i, 1 and 0 using all of basic mathematical operations, exponentiation, multiplication, and addition. On top of this it is an astounding, nearly unbelievable result.

He considered it poetry in Mathematics.
 
Originally posted by mathman
e(pi)i=-1
i forgot about this equation.
any significance to it?
 
Originally posted by lavalamp
If it's any help these are the power series for [pi] and e:

Code:
         r=[oo]
[pi] = 4 * [sum]  ((-1)^r) = 4 - 4 + 4 - 4 + 4 
         r=1 (------)       -   -   -   - ... etc.
             ( 2r-1 )       3   5   7   9 

And

    r=[oo]
e = [sum]  (   1  ) = 1  + 1  + 1  + 1  + 1           = 1 + 1 + 1 + 1 + 1
    r=1 (------)   --   --   --   --   -- ... etc.           -   -   -- ... etc.
        ((r-1)!)   0!   1!   2!   3!   4!                    2   6   24

[pi] can also be obtained like this:

x * Sin (180/x) where x is a very large number and 180/x is in degrees.

I've attached a script to calculate pi and e using the above power series', however I have not been able to calculate pi using the Sin method as JavaScript assumes that the angle is measured in radians and it does not have a built in Math.pi method to allow me to convert the angle from radians into degrees.
Be careful if you are calculating pi to 1,000,000 iterations, I have an Athlon 1800+ and it caused my PC to hang for a couple of seconds, although I was listening to music at the time.

If you want to view the source, generally in Windows browsers, you can go View > Source.
the condition for the summations in both cases is the same, ie r=infinity r=1.
 
What is phi exactly?
I though it was just another unknown like 'x' 'theta' etc etc


The above formula can also be expressed as

e^(i*x) = cos(x) + i*sin(x)



also 'e' can be derived from

(1 + (1/k))^k

as k approaches infinity, the value of 'e' is more accurate.


Also, if you would like a few million digits of pi, download PiFast and SuperPi and you can calculate them with relative ease :) . Alot of people use these programs to benchmark their overclocked computers and to test stability.
 
  • #10
Originally posted by loop quantum gravity
the condition for the summations in both cases is the same, ie r=infinity r=1.
And I put that, what do you think this is:

Code:
    r=[oo]
e = [sum]
    r=1
It's just that if I were to make a script that would run forever you'd never get an answer so what would the point of it be?

Anyway I've re-posted the script if anyone's interested, it includes the (1 + (1/k))^k way to calculate e.

By the way, does anyone know the formula for finding the decimal places of [pi]? I have heard of a formula that when you put in a number (say n, for the nth decimal place), you get an answer. I assume there is one for e as well, so does anyone have that?
 

Attachments

  • #11
The golden ratio, (1 + 5^(1/2)) / 2 = 1.618... is often denoted by the symbol φ.
 
  • #12
I've heard of the golden ratio, but what is it used for and why is it golden?
 
  • #13
The ancient greeks thought that the most visually pleasing rectangles had their side lengths in the proportion

φ : 1


Such a rectangle, called a golden rectangle, has the property that if you cut a square out of it as follows, the new rectangle has the same proportions as the original rectangle.

Code:
+---+--+
|   |  |
|   |  |
|   |  |
+---+--+


φ, like some other constants, has a tendency to appear in unexpected places. One of the most interesting is the fact that for n >= 0, the n-th Fibbonachi number can be written as:

Fn = round( φ^n / sqrt(5) )

Where "round" means round to the nearest integer.

The exact formula, incidentally, is:

Fn = (φ^n - (1 - φ)^n) / sqrt(5)
 
  • #14
Is that assuming that the first two starting numbers are 0 and 1? Is there a formula for finding the nth term for the Fibbonacci sequence that doesn't start with 0 and 1?

I also thought that the sequence was one of those things that didn't have a formula, I wonder where I got that idea from.
 
  • #15
Yes, I was using F0 = 0 and F1 = 1.


If you want a different starting point, just substute n with n + k for some k.
 
  • #16
What about values such as 0 and 2?
 
  • #17
The general solution to the recurrence f(n+2) = f(n) + f(n+1) is:

f(n) = A * φ^n + B * (1 - φ)^n
 
  • #18
Hmmm, sorry about chasing you around with this but, if you put in 0 and 1, for A and B respectively, you don't get:

Fn = (φ^n - (1 - φ)^n) / sqrt(5)
 
  • #19
Oh, A and B aren't supposed to be terms 0 and 1; they're constants for which you need to solve.
 
  • #20
So I would need the first few terms of the sequence before I could find A and B. OK, fair enough. Maybe I'll find a pattern for the values of A and B for various starting values.

Thanks for the help.
 
  • #21
Any two would do, actually. Two equations in two unknowns. You could write down an explicit formula for A and B in terms of f(0) and f(1) if you wanted!
 
  • #22
I'll think that I'll save that little treat for another time. Just like last night, I'm tired and I don't work well (or at all) when I'm tired.
 
  • #23
Originally posted by lavalamp
And I put that, what do you think this is:

Code:
    r=[oo]
e = [sum]
    r=1
It's just that if I were to make a script that would run forever you'd never get an answer so what would the point of it be?

Anyway I've re-posted the script if anyone's interested, it includes the (1 + (1/k))^k way to calculate e.

By the way, does anyone know the formula for finding the decimal places of [pi]? I have heard of a formula that when you put in a number (say n, for the nth decimal place), you get an answer. I assume there is one for e as well, so does anyone have that?
is there any reason why this condition applies in both of them?
 
  • #24
Originally posted by mathman
e(pi)i=-1
another way to write this (which i hope no one has yet written it) is:
e^(i*pi)=-1
e^[(i*pi)/2]=-1^0.5
e^[(i*pi)/2]=i
 
  • #25
Originally posted by loop quantum gravity
another way to write this (which i hope no one has yet written it) is:
e^(i*pi)=-1
e^[(i*pi)/2]=-1^0.5
e^[(i*pi)/2]=i

Be careful when doing those sorts of operations with imaginery numbers, but yes that is correct, if you look right back to the start where I gave you a couple of identities you can then put the last term to the power of i which leaves you with the well-known and proved identity of:

ii = e-π/2
 
  • #26
Originally posted by loop quantum gravity
i forgot about this equation.
any significance to it?

If you would like I can post how it is possible to arrive at that solution (by that solution, I mean this - e^(i[pi])+1=0).

It uses the power series of e^x, but replaces x with i[pi], and you wind up with the power series for cos and sin, then when substituting in [pi], you get the equation mentioned above.
 
  • #27
Originally posted by lavalamp
If you would like I can post how it is possible to arrive at that solution (by that solution, I mean this - e^(i[pi])+1=0).

It uses the power series of e^x, but replaces x with i[pi], and you wind up with the power series for cos and sin, then when substituting in [pi], you get the equation mentioned above.

It's quite easy to derive (the orginal dervitaion comes from considering the series for cos x, sin x and ex), but it's significance is that it is the special case of x = π in Euler's formula:

eix = cos x + i sin x

Which is one of Euler's identities, the others being:

sin x = (eix - e-ix)/2i

cos x = (eix + e-ix)/2
 
  • #28
If you start with 1 and 3 the ratio of consecutive terms approaches phi the fastest (for integers). In fact, each term after the first is round[(phi)^n] : 3 is phi^2, 4 is phi^3, etc. rounded to the nearest integer. If you start with (1, phi) as the first two terms instead of just integers, then the next term is 1+phi which is phi^2, next is phi+phi^2 which is phi^3, etc. (1+5^.5)/2 * (1+5^.5)/2 = (1+2*5^.5+5)/4 = (3+5^.5)/2 = 1+phi. It works!
Aaron
 
  • #29
Originally posted by synergy
phi+phi^2 which is phi^3

Did you mean phi*phi^2 here.
 
  • #30
Originally posted by jcsd

sin x = (eix - e-ix)/2i

cos x = (eix + e-ix)/2

Arn't those the hyperbolic functions?
cosh sinh?

I might be terribly wrong I am still in high school and we havnt touched this sort of stuff yet. I just like reading maths sites :)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 28 ·
Replies
28
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 26 ·
Replies
26
Views
847
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K