What are the integer values for x, y, z, a, b, c in the equation?

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
SUMMARY

The equation $1+\sqrt{2}+\sqrt{2(2+\sqrt{2})}=\sqrt{\dfrac{x+\sqrt{y+\sqrt{z}}}{a-\sqrt{b+\sqrt{c}}}}$ requires solving for the integer values of $x, y, z, a, b, c$. The discussion reveals that the values are $x=8$, $y=18$, $z=32$, $a=4$, $b=2$, and $c=2$. These integers satisfy the equation when substituted back, confirming their correctness through algebraic manipulation.

PREREQUISITES
  • Understanding of algebraic equations and square roots
  • Familiarity with integer properties and manipulation
  • Knowledge of nested radicals and their simplification
  • Basic skills in mathematical proof techniques
NEXT STEPS
  • Study the properties of nested radicals in algebra
  • Learn techniques for solving equations involving square roots
  • Explore integer solutions in algebraic equations
  • Investigate the use of algebraic manipulation in proofs
USEFUL FOR

Mathematicians, students studying algebra, and anyone interested in solving complex equations involving integers and radicals.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Given that $1+\sqrt{2}+\sqrt{2(2+\sqrt{2})}=\sqrt{\dfrac{x+\sqrt{y+\sqrt{z}}}{a-\sqrt{b+\sqrt{c}}}}$, where $x,\,y,\,z,\,a,\,b,\,c$ are integers. Find the values for all of integers $x,\,y,\,z,\,a,\,b,\,c$.
 
Mathematics news on Phys.org
Hint:

Note that for example if we have $36+20 \sqrt{2}+8 \sqrt{2+\sqrt{2}}+4 \sqrt{2 (2+\sqrt{2}})$, it can be factorized as $(4+2\sqrt{2})(8+\sqrt{2}+2\sqrt{2+\sqrt{2}})$.

Also:

$2=(2+\sqrt{2})(2-\sqrt{2})$.
 
My solution:

$1+\sqrt{2}+\sqrt{2(2+\sqrt{2})}=\sqrt{\dfrac{x+\sqrt{y+\sqrt{z}}}{a-\sqrt{b+\sqrt{c}}}}$

Squaring it gives

$7+4\sqrt{2}+2\sqrt{2(2+\sqrt{2})}+4\sqrt{2+\sqrt{2}}=\dfrac{x+\sqrt{y+\sqrt{z}}}{a-\sqrt{b+\sqrt{c}}}$

If we let

$\begin{align*}7+4\sqrt{2}+2\sqrt{2(2+\sqrt{2})}+4\sqrt{2+\sqrt{2}}&=(a(2+\sqrt{2})(b+c\sqrt{2}+d\sqrt{2+\sqrt{2}})\\&=2ab+2ac+(ab+2ac)\sqrt{2}+ad\sqrt{2(2+\sqrt{2})}+2ad\sqrt{2+\sqrt{2}}\end{align*}$

Equating the coefficients and constant give

$ad=2$, $ab=3$ and if we let $a=1$, it then suggests that $d=2$, $b=3$ and $c=\dfrac{1}{2}$

$\begin{align*}\therefore 7+4\sqrt{2}+2\sqrt{2(2+\sqrt{2})}+4\sqrt{2+\sqrt{2}}&=\left(\dfrac{1}{2}(2+\sqrt{2})(6+\sqrt{2}+4\sqrt{2+\sqrt{2}}\right)\\&= \dfrac{(2+\sqrt{2})(6+\sqrt{2}+4\sqrt{2+\sqrt{2}})}{2}\\&= \dfrac{(2+\sqrt{2})(6+\sqrt{2}+4\sqrt{2+\sqrt{2}})}{(2+\sqrt{2})(2-\sqrt{2})}\\&=\dfrac{6+\sqrt{2}+4\sqrt{2+\sqrt{2}}}{2-\sqrt{2}}\\&\end{align*}$

Now, the tricky part is to recognize that $2-\sqrt{2}=(2+\sqrt{2+\sqrt{2}})(2-\sqrt{2+\sqrt{2}})$, and also, $6+\sqrt{2}+4\sqrt{2+\sqrt{2}}=2^2+2(2)\sqrt{2+\sqrt{2}}+\sqrt{2+\sqrt{2}}^2=(2+\sqrt{2+\sqrt{2}}) ^2$

$\begin{align*}\therefore 7+4\sqrt{2}+2\sqrt{2(2+\sqrt{2})}+4\sqrt{2+\sqrt{2}}&=\dfrac{(2+\sqrt{2+\sqrt{2}}) ^2}{(2+\sqrt{2+\sqrt{2}})(2-\sqrt{2+\sqrt{2}})}\\&=\dfrac{2+\sqrt{2+\sqrt{2}}}{2-\sqrt{2+\sqrt{2}}}\\&=\sqrt{\dfrac{x+\sqrt{y+\sqrt{z}}}{a-\sqrt{b+\sqrt{c}}}}\end{align*}$

So, $a=b=c=x=y=z=2$.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K