MHB What are the minimum and maximum values of the given function?

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Max
Albert1
Messages
1,221
Reaction score
0
$f(x)=\sqrt {8x-x^2}-\sqrt{14x-x^2-48}$
find :$min(f(x))$ and $max(f(x))$
 
Mathematics news on Phys.org
Given $f(x) = \sqrt{8x-x^2} - \sqrt{14x-x^2-48} = \sqrt{16-(x-4)^2} - \sqrt{1-(x-7)^2}$

Now Drawing Two half Circle,

$y_{1} = \sqrt{16-(x-4)^2}$ and $y_{2} = \sqrt{1-(x-7)^2}$

I am getting ..

Max. of $(y_{1}-y_{2}) = 2\sqrt{3}$ at $x=6$ and Min. of $(y_{1}-y_{2}) = 0$ at $x=8$

Edited it.
 
Last edited:
jacks said:
Given $f(x) = \sqrt{8x-x^2} - \sqrt{14x-x^2-48} = \sqrt{16-(x-4)^2} - \sqrt{1-(x-7)^2}$

Now Drawing Two half Circle,

$y_{1} = \sqrt{16-(x-4)^2}$ and $y_{2} = \sqrt{1-(x-7)^2}$

I am getting ..

Max. of $(y_{1}-y_{2}) = 2\sqrt{3}$ at $x=6$ and Min. of $(y_{1}-y_{2}) = \sqrt{7}-1$ at $x=7$
max=$2\sqrt 3$ correct
min :$0$ correct
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top