MHB What are the normals of a parabola passing through a given point?

  • Thread starter Thread starter Theia
  • Start date Start date
  • Tags Tags
    Parabola
Click For Summary
The discussion focuses on finding the normals of the parabola defined by the equation y = 2x^2 + 4x + 7/4 that pass through the point (3, 15/2). Participants are encouraged to demonstrate their understanding of the problem to receive appropriate hints and assistance. The original poster has already solved the problem and presents it as a challenge to the community. The thread emphasizes the importance of engaging with the problem before seeking help. Overall, it fosters a collaborative environment for problem-solving.
Theia
Messages
121
Reaction score
1
Find all the normals of function $$y = 2x^2 + 4x + \tfrac{7}{4}$$ which goes through the point $$\left( 3, \tfrac{15}{2} \right)$$.
 
Mathematics news on Phys.org
Why? If you are posting this because you want help with it then you should show us what you do understand about it yourself so that we will know what kinds of hints and help you need.

Do you understand what a "normal" to a graph is? Do you understand that a normal to a graph, at a point, is perpendicular to the tangent to that graph at that point? Can you find the tangent to $y= 2x^2+ 4x+ \frac{7}{4}$.

Notice that $2(3)^2+ 4(3)+ \frac{7}{2}= 18+ 12+ \frac{7}{4}= 30+ \frac{7}{4}= \frac{127}{4}$ not $\frac{15}{2}$ so the given point is not on the curve. You will need to find the tangent line at some point $\left(a, 2a^2+ 4a+ \frac{7}{2}\right)$ then find a so that tangent line passes through (3, 15/4). Once you have found the point and the equation of the tangent, it should be easy to find the normal line.
 
HallsofIvy said:
Why? If you are posting this because you want help with it then you should show us what you do understand about it yourself so that we will know what kinds of hints and help you need.

Do you understand what a "normal" to a graph is? Do you understand that a normal to a graph, at a point, is perpendicular to the tangent to that graph at that point? Can you find the tangent to $y= 2x^2+ 4x+ \frac{7}{4}$.

Notice that $2(3)^2+ 4(3)+ \frac{7}{2}= 18+ 12+ \frac{7}{4}= 30+ \frac{7}{4}= \frac{127}{4}$ not $\frac{15}{2}$ so the given point is not on the curve. You will need to find the tangent line at some point $\left(a, 2a^2+ 4a+ \frac{7}{2}\right)$ then find a so that tangent line passes through (3, 15/4). Once you have found the point and the equation of the tangent, it should be easy to find the normal line.

This thread was posted in our "Challenge Questions and Puzzles" forum, so that means the OP has the solution and finds the problem interesting and so wishes to post the problem as a challenge to the community. (Yes)

By the way, I edited your post to hide anything that might give anything away for those who don't wish to see any hints before attempting to solve it themselves.
 
Okay, thanks.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
20
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K