MHB What Are the Properties of the Maps Defined in the Content?

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Properties
Click For Summary
The discussion focuses on the properties of the defined map $\text{cost}_a:\mathbb{R}\rightarrow \mathbb{R}$ and related operations. Participants demonstrate that the sum of two cost maps equals the cost map of their sum, and that scaling a cost map by a scalar yields another cost map. They also confirm properties of addition and negation for general maps, including that the sum of a function and its negation equals the zero map. The group agrees that the proofs for these properties are straightforward and correct. Overall, the discussion emphasizes the algebraic structure of the defined maps and their interactions.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $a\in \mathbb{R}$. We define the map $\text{cost}_a:\mathbb{R}\rightarrow \mathbb{R}$, $x\mapsto a$. We define also $-f:=(-1)f$ for a map $f:\mathbb{R}\rightarrow \mathbb{R}$.

Let $f:\mathbb{R}\rightarrow\mathbb{R}$ be a map and $\lambda\in \mathbb{R}$.

Show that:

  1. for $a,b\in \mathbb{R}$ it holds that $\text{cost}_a+\text{cost}_b=\text{cost}_{a+b}$.
  2. for $a\in \mathbb{R}$ it holds that $\lambda\text{cost}_a=\text{cost}_{\lambda a}$.
  3. $-(f+g)=(-f)+(-g)$.
  4. $f+f=2f$.
  5. $f+(-f)=\text{cost}_0$.

Could you give me a hint how we could these? Aren't all of these trivial? (Wondering)
 
Physics news on Phys.org
Hey mathmari!

I guess the first one can be shown as follows:
$$\DeclareMathOperator{\cost}{cost}
\forall a,b\in\mathbb R,\,\forall x\in\mathbb R : (\cost_a+\cost_b)(x)=\cost_a(x)+\cost_b(x)=a+b=\cost_{a+b}(x)$$
Therefore:
$$\forall a,b\in\mathbb R : \cost_a+\cost_b=\cost_{a+b}$$
(Thinking)

And yes, it does look rather trivial. (Tauri)
 
Klaas van Aarsen said:
I guess the first one can be shown as follows:
$$\DeclareMathOperator{\cost}{cost}
\forall a,b\in\mathbb R,\,\forall x\in\mathbb R : (\cost_a+\cost_b)(x)=\cost_a(x)+\cost_b(x)=a+b=\cost_{a+b}(x)$$
Therefore:
$$\forall a,b\in\mathbb R : \cost_a+\cost_b=\cost_{a+b}$$
(Thinking)

Ahh ok! (Malthe)

In the same way we could show also the other ones, or not? (Wondering)

$$2. \ \ \ \DeclareMathOperator{\cost}{cost}
\forall a\in\mathbb R,\,\forall x\in\mathbb R : \lambda \cost_a(x)=\lambda a=\cost_{\lambda a}(x)$$
Therefore:
$$\forall a\in\mathbb R : \lambda\cost_a=\cost_{\lambda a}$$

$$3. \ \ \ \forall x\in\mathbb R : -(f+g)(x)=(-1)(f+g)(x)=(-1)(f(x)+g(x))=(-1)f(x)+(-1)g(x)=(-f)(x)+(-g)(x)$$
Therefore:
$$-(f+g)=(-f)+(-g)$$

$$4. \ \ \ \forall x\in\mathbb R : (f+f)(x)=f(x)+f(x)=2f(x)$$
Therefore:
$$f+f=2f$$

$$5. \ \ \ \forall x\in\mathbb R : (f+(-f))(x)=(f+(-1)f)(x)=f(x)+(-1)f(x)=(1-1)f(x)=0\cdot f(x)=0=\text{cost}_0(x)$$
Therefore:
$$f+(-f)=\text{cost}_0$$ Is everything correct? Could we improve something? (Wondering)
 
Looks all good to me. (Nod)
 
Klaas van Aarsen said:
Looks all good to me. (Nod)

Great! Thank you! (Yes)
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
20
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K