What Are the Properties of the Maps Defined in the Content?

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Properties
Click For Summary

Discussion Overview

The discussion revolves around the properties of specific mathematical maps defined in the context of real-valued functions. Participants explore various algebraic properties of these maps, including addition, scalar multiplication, and negation, with a focus on proving certain identities and relationships.

Discussion Character

  • Mathematical reasoning
  • Technical explanation

Main Points Raised

  • One participant defines the map $\text{cost}_a$ and proposes several properties to be shown, including $\text{cost}_a + \text{cost}_b = \text{cost}_{a+b}$.
  • Another participant provides a proof for the first property, demonstrating that $(\cost_a + \cost_b)(x) = a + b = \cost_{a+b}(x)$ for all $x \in \mathbb{R}$.
  • Further, the same participant suggests that similar proofs could be constructed for the other properties listed, including $\lambda \cost_a = \cost_{\lambda a}$ and $-(f + g) = (-f) + (-g)$.
  • Subsequent posts reiterate the proofs for the remaining properties, confirming their validity without introducing corrections or alternative views.
  • Participants express agreement on the correctness of the proofs presented, with one participant asking if improvements could be made.

Areas of Agreement / Disagreement

Participants generally agree on the correctness of the proofs provided for the properties of the maps. There is no indication of disagreement, but the discussion remains focused on confirming the proofs rather than exploring alternative interpretations or models.

Contextual Notes

The discussion does not address any limitations or assumptions explicitly, nor does it explore the implications of the properties beyond their algebraic verification.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $a\in \mathbb{R}$. We define the map $\text{cost}_a:\mathbb{R}\rightarrow \mathbb{R}$, $x\mapsto a$. We define also $-f:=(-1)f$ for a map $f:\mathbb{R}\rightarrow \mathbb{R}$.

Let $f:\mathbb{R}\rightarrow\mathbb{R}$ be a map and $\lambda\in \mathbb{R}$.

Show that:

  1. for $a,b\in \mathbb{R}$ it holds that $\text{cost}_a+\text{cost}_b=\text{cost}_{a+b}$.
  2. for $a\in \mathbb{R}$ it holds that $\lambda\text{cost}_a=\text{cost}_{\lambda a}$.
  3. $-(f+g)=(-f)+(-g)$.
  4. $f+f=2f$.
  5. $f+(-f)=\text{cost}_0$.

Could you give me a hint how we could these? Aren't all of these trivial? (Wondering)
 
Physics news on Phys.org
Hey mathmari!

I guess the first one can be shown as follows:
$$\DeclareMathOperator{\cost}{cost}
\forall a,b\in\mathbb R,\,\forall x\in\mathbb R : (\cost_a+\cost_b)(x)=\cost_a(x)+\cost_b(x)=a+b=\cost_{a+b}(x)$$
Therefore:
$$\forall a,b\in\mathbb R : \cost_a+\cost_b=\cost_{a+b}$$
(Thinking)

And yes, it does look rather trivial. (Tauri)
 
Klaas van Aarsen said:
I guess the first one can be shown as follows:
$$\DeclareMathOperator{\cost}{cost}
\forall a,b\in\mathbb R,\,\forall x\in\mathbb R : (\cost_a+\cost_b)(x)=\cost_a(x)+\cost_b(x)=a+b=\cost_{a+b}(x)$$
Therefore:
$$\forall a,b\in\mathbb R : \cost_a+\cost_b=\cost_{a+b}$$
(Thinking)

Ahh ok! (Malthe)

In the same way we could show also the other ones, or not? (Wondering)

$$2. \ \ \ \DeclareMathOperator{\cost}{cost}
\forall a\in\mathbb R,\,\forall x\in\mathbb R : \lambda \cost_a(x)=\lambda a=\cost_{\lambda a}(x)$$
Therefore:
$$\forall a\in\mathbb R : \lambda\cost_a=\cost_{\lambda a}$$

$$3. \ \ \ \forall x\in\mathbb R : -(f+g)(x)=(-1)(f+g)(x)=(-1)(f(x)+g(x))=(-1)f(x)+(-1)g(x)=(-f)(x)+(-g)(x)$$
Therefore:
$$-(f+g)=(-f)+(-g)$$

$$4. \ \ \ \forall x\in\mathbb R : (f+f)(x)=f(x)+f(x)=2f(x)$$
Therefore:
$$f+f=2f$$

$$5. \ \ \ \forall x\in\mathbb R : (f+(-f))(x)=(f+(-1)f)(x)=f(x)+(-1)f(x)=(1-1)f(x)=0\cdot f(x)=0=\text{cost}_0(x)$$
Therefore:
$$f+(-f)=\text{cost}_0$$ Is everything correct? Could we improve something? (Wondering)
 
Looks all good to me. (Nod)
 
Klaas van Aarsen said:
Looks all good to me. (Nod)

Great! Thank you! (Yes)
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
20
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K