MHB What are the solutions to this absolute value equation?

Click For Summary
The discussion focuses on solving the absolute value equation |1/2x + 1| = |x|. The correct solutions identified are x = 2 and x = -2/3, with a clarification on the interpretation of the equation's format. Two cases are derived: one leading to a quadratic equation with real solutions, and the other resulting in complex solutions. Participants emphasize the importance of clarity in mathematical notation to avoid confusion. Overall, the conversation highlights both the correct solutions and the need for precise expression in mathematical equations.
Alexstrasuz1
Messages
20
Reaction score
0
I have trouble solving this equation
|1/2x+1|=|x|

My answers are x=2 and x=-2/3
 
Last edited:
Mathematics news on Phys.org
corrected mistake in (2) as pointed out by MarkFL in the successive post...

Alexstrasuz said:
I have trouble solving this equation
|1/2x+1|=|x|

My answers are x=2 and x=-2/3

An easy way is to find the solution of the equations...

$\displaystyle \frac{1}{2 x} + 1 = x \implies 2\ x^{2} - 2\ x - 1 =0 \implies x = \frac{1 \pm \sqrt{3}}{2}\ (1)$

$\displaystyle \frac{1}{2 x} + 1 = - x \implies 2\ x^{2} + 2\ x + 1 =0 \implies x = \frac{- 1 \pm i}{2}\ (2)$

Kind regards

$\chi$ $\sigma$

P.S. MarlFL has 'discovered' a mistake in (2) and I corrected it... sorry!...
 
Last edited:
chisigma said:
An easy way is to find the solution of the equations...

$\displaystyle \frac{1}{2 x} + 1 = x \implies 2\ x^{2} - 2\ x - 1 =0 \implies x = \frac{1 \pm \sqrt{3}}{2}\ (1)$

$\displaystyle \frac{1}{2 x} + 1 = - x \implies 2\ x^{2} + 2\ x - 1 =0 \implies x = \frac{- 1 \pm \sqrt{3}}{2}\ (2)$

Kind regards

$\chi$ $\sigma$

The second equation should be:

$$2x^2+2x+1=0\implies x=\frac{-1\pm i}{2}$$
 
Alexstrasuz said:
I have trouble solving this equation
|1/2x+1|=|x|

My answers are x=2 and x=-2/3

Yes, your answers are correct.
Other posts were solving...
|1/2/x+1|=|x|
 
RLBrown said:
Yes, your answers are correct.
Other posts were solving...
|1/2/x+1|=|x|

Just to be clear, I was solving:

$$\left|\frac{1}{2x}+1\right|=|x|$$

More often than not, when someone uses 1/2x, they mean 1/(2x) as opposed to (1/2)x.

This is why is is better to use bracketing symbols (or even better, use $\LaTeX$) to remove doubt. :D
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
Replies
12
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K